NEC Electronics Inc.

NEC

November 1986

uPD70616
Programmer's
Reference
Manual

PRELIMINARY INFORMATION

©1986 NEC Electronics Inc./Printed in U.S.A. No part of this document may be copied or reproduced in any form or by
any means without the prior written consent of NEC Electronics Inc. The
inf%ggaﬁon in this document is preliminary and subject to change without
notice.

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Preface

The ability to integrate hundreds of thousands of transistors on to a single silicon chip represents one of the most
important technological advances. This capability has greatly impacted the design of microprocessors and allowed
computer architects to design systems in silicon that even a few years ago where unimaginable. As such, the increase
in performance of the next generation of 32-bit microprocessors eclipses that of the current generation 16- and 32-bit
devices.

Using these semiconductor and computer architecture advances, NEC has been developing the V-Series
microprocessor family. A new microprocessor family, the V-Series has been designed from scratch for
implementation using high performance, low power CMOS VLSI technology. The V-Series microprocessors are
represented in both the high integration and high performance marketplaces. Beginning in 1984 with the introduction
of the V20™ /V30™ microprocessors and the subsequent introduction in 1985 of the V40™/V50™ microprocessors,
NEC has been the world leader in the design and production of high integration CMOS 16-bit microprocessors.

This manual describes the architecture of the first of a family of high performance 32-bit microprocessors, the
nPD70616 (VB0™). The uPD70616 is a general purpose microprocessor with the features of high-end mainframe and
super minicomputers. Featuring a sophisticated 32-bit architecture, the uPD70616 integrates a variety of powerful
instructions, data types, addressing modes, virtual memory and a four stage instruction pipeline. Aimed at a wide
variety of applications, the uPD70616 will find widespread use in sophisticated office, real-time and engineering
systems.

"VZ2O™, V30™, VA0™, V50™ and V60™ are trademarks of NEC Corporation

1.0 PRELIMINARY INFORMATION

PRELIMINARY INFORMATION

1PD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

1tPD70616 PROGRAMMER'S REFERENCE MANUAL

Table of Contents

Section 1 INErOAUCHION ... e s 1-1
[T -] 41 Y- SRS 1-1
HPD70616 ArchiteCture OVEIVIEWiiiii it iire s e e ee e e e e e e e e e e e re et seeeseraesens 1-3
BASIC ATCRILECIUIEvvveeeeeeeeeievereeeeees et eees e e seses et ee et et ee et e e s s seeeseeseees s seses e e seesssseseses s 1-3
Virtual Memory Management.... ... 1-8
D=1 - B Y o 1= SO PO USSP URPPTPIN i-12
INSITUCHION SO i e e et e s e e e e s e e satb e e eeesebenenrannes, 1-14
System SUPPOM FEAIUIES . oouvn i e e e e e e e e e e 1-15
pPD70616 Architecture Implementation ... e e, 1-17
ProCeSSOr FEAIUIEScceeiei e e e e e e e e 1-17
Pipeline OPeration ... e aa e aaans 1-18
NOtational CONVENTIONSooiiiiiii e e e e e e e e et e e e e e reaeae e e s 1-20
NUMEHCAL VAIUESo e e e e e e e eeaeaeaaneaes 1-20
Data OrganiZatiOnucuiiiiiiiiiitie e ee et a s e sttt b ab et ettt b nr s 1-20
Memory OrganiZationcouueiiiiiiai e e e e e e ae e 1-21
Abbreviations and Special Terminology -...cccoocoruiiiiiiiiiiieie e 1-22
'Section 2 [0 721 T 1T o 1= PR PR 2-1
Yo (o1 £ X 1] T U SO UPPRRRPIIN 2—1
Byte AdAresSSingoveviiiriiiiiiiiiii i e N 2—1
ReQiSter AdAreSSINGcooiriiiiiiiiiiiei e e et e e e e e e e ae et e e e e e ae e eaan 2-3

Bt A S SIMG (v iiiiiiiii e e e e e araans 2-4
D= e B Y7 o T PP UOUPRPUPPRRTP 2-5
Y (o [l=Te I o1 (-To =1 ¢ TSR 2-5
UNSIGNEA INTEGEIS oot et e et st e eet b e e ae et e e 2-6

273 O TR P TP PR PPPPTRTOPTIN 2-6
Y ToY o G 2 1= | S 2-6
LONG REAI i e e e 2-7

1 7=Tod | 12 =1 T O P OO P PP PP 2-7

(0] 0 F-1 2 Lo 1=1 £ O PO OO PTPPPPUPRUPPRRRPRN 2-7

Bit FIEIAS ... e et 2-8

Bt S TN . oeieii et e 2-9

L = Lol <= T P PPN 2-9

1.0 i PRELIMINARY INFORMATION

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Section 3 Register Set ... et ee e et e et e ae e 3-1
Program RegiSter Setccoviiiiiiiiii it e .. 3-3
General PUrpose RegiSterscccccvviiiiiiiiiiiiii e 3-3
Program COoUNLEr (PC)oviiiiiiiiiariii ittt ettt s e s e s s e e e s e s e s e 3-3
Program Status Word (PSW)coiiiiiiiiiiiiiii i 3-3
Privileged RegiStEr Stcoooiiiiiiiiiiiiie e 3-7
(S 1o L oo 11 14=1 1= S PTG 3-8
System Base Register (SBR) ... 3-8
Task ReGIStEr (TR) «.oc.eeeiiiiieiiii i e 3-9
Task Control Word (TKCW) ...t se e e s e e, 3-9
System Control Word (SYCW)ooiiiiiiiiiii st 3-11
Processor ID Reister (PIR)veiiiii ettt 3-12
ATEa TaADIE REGISIEISvvveeeeeeeeeeeeeeeeeee et eeeattete et ee et es st sesa ettt ettt e s s 3-12
Area Table Base Registers (ATBR)ccoieeiiiiiiii e 3-13

Area Table Length Registers (ATLR)cviiiiiiiiiiiiiniiiii e, 3-13
Address Trap REQISIEISuuuuiiiiiee e e e 3-14
Trap Mode Register (TRMOD)oociiiiiiiiiiiie e 3-14
Address Trap Registers (ADTR)coociiiicicie e, 3-15
Address Trap Mask Registers (ADTMRY) ...oooveiiiiiiniii e 3-15
Program Status Word 2 (PSW2) ..ot 3-15
Section 4 AQAreSS SPACESvvvveiiiiiiiie ittt ittt a e e e 4-1
1818 £ 1o [0 T3 {10] 1 RPUTRTT RO T TS P PP RO 4-1
VirtUal AQArESS SPACE «oeiiiieeiii ittt ee e et sttt a et s e e ee e e e s e e s b 4-2
L= Ye1 1o] 2 T SO OPO PO PPTP 4-3

YN €= T ST OPP PP 4-4

o Vo - Y- T USSP PP PRSP 4-5
AdAress SPAace NOTES ...ooiiiiiiiiii et e ea e 4-6
| USBCHON NOES oo oeeieeieeeeoe oot 4-6
YN = B N o] O 1T OO P TPPPPPT P 4-7

o3 oY (=11 11+ o NPTTTT TR TP P PP PRSPPI 4-9
EXECULION LBVEIS oooei it e et e e et et e s e r b e e e e 4-9
ATEA PrOTBCLIONS ...oiit i e e ettt et et et e e e 4-9
Page PrOtECHOMS .ottt et 4-9
MEMOTY AQAreSS SPACE ... coiciiiiiiiiiiiiii et e 4-10
/O AGATESS SPACE ..eueuviiiiiiiiieieieee et e bttt e e e e e e e a e 4-10
[/© SPACE ACCESS ...eeiieiiiiee et et 4-10
Virtual Address Space Mapping . oooooor i et 4-10
Multiple Virtual AdAress SPaCEScoocviiiiiiiiiiiiiir i 4-11
AAreSS TrANSIAION .ot e et ettt e e e e 4-13
Area Table RegiSter Paircoooiiiiiii i 4-14

PRELIMINARY INFORMATION i 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

ATEA TaADIES i e n e, 4-14
Area Table ENtries (ATE) ... ettt e e e ae e et e eeeeeeaans 4-14

Pag@ TabIESeeiiiiiiiiiii et et e e e e b bt bbbt 4-15
Page Table Entries (PTE) ...cccoouviiieiriioiieie ettt e, 4-16
Section 5 Task Managementooeiiii e e e e eeaeaeaans 5-1
Context SWICHING ..o ettt et e e e e e 5-1
INSIFUCHION SEt SUPPOM .. . e et e e e e et e e et e e re s e e e eeee et reaeeeaes, 5-3
Section 6 Instruction Formats and Addressing Modesccooooviviiiiiiiiniiiic e, 6-1
INSEIUCHION FOPMALSeeii i i e e e e s e et e s e e e aeeneeeeannas 6—1
FOIMAt | oo e e e e e et e e e et e e e e st e e e e et e e reaneas 6-2
FOMMAL 1 e et e e e e e e e e ee et e e s e ee e e s ettt reeeeeaeeeraaaa 6-3
(o117 O 1 PN RRTTTTURPPRN 6-4
FOIMAL TV oo e ettt e e e e e e e b e e e e e e e s e e te e e e ee it eresenans 6-5
FOTMAE Vi e et e et e e et e e e e s e e et e e e et e e s et aeteneneeaeteneaans 6-6
FOPMAL VI oo e e e e e e e e e e eete e aa bt s e eetene ettt e e eneaeeaees 6-7
FOMMAt Vil e e e et e e e et e e e e e eeteae s eeeeeeneeenes 6-8
AdAressing MOAESoooviiiiiiii e s 6-11
Calculation of Bit AQAreSSeSoiviiivr i e e e e 6-12
Addressing Mode ENCOINGoooviimimiiiiiii e 6-13
UPD70616 Addressing MOAESvuiiiiiiiiiiii e e 6-15
2T 1) (=] G ST SP ORI 6-16
RegiSter INAIFECE 6-17
Register INdireCt INdeXedvvviiiiiiiiiiin e 6-18
AULOINCTEIMENT Looiiiiii e te et ettt e e e e e e 6-19

LY 0] (oTe [Tod £-10 1= 4) S OSSO 6-20
DISPIACEMENT oo e e e 6-21
Displacement INAEXedoooiiiiiiiiiiii e e 6-22

PC DiSPIaCEMENT ..o e e 6-23

PC Displacement INAEXEauuiiiiiiiiiiiiiiiiieii s et 6-24
Displacement INAIrECE ... et e 6-25
Displacement INAireCt INAexXedo e e 6-26

PC Displacement INAIreCtoovvviimiiriirire it 6-27

PC Displacement Indirect Indexedoooiiiiiiii 6-28

Double Displacementc.cuiiiiiiiiiiiiii e 6-29

PC Double DiSplaCemENntiuiiiiiiiiiiieiii e e 6-30

D1 1=Y0) QYo (o [=11 P P TP P PPN 6-31

Direct ADAress INAEXEdoiiiiiiiii ettt e e e e 6-32

Direct Address Deferred ..o 6-33

Direct Address Deferred Indexedooouveiiiiiiiii 6-34

1.0

il PRELIMINARY INFORMATION

pPD70616 PROGRAMMER'S REFERENCE MANUAL

[12100T=To T | (2 U PUTUORPTN 6-35
Immediate QUICKcoeuiiiiiiiii e e e e e e e e e e a e e nr e e eeren, 6-36
Addressing Mode RestriCtionscoooiiiiiiiii e 6-37
Section 7 pPD70616 Instruction Set
Section 8 Interrupts and EXCEPtionS ... e 8-1
System Base Tablec.oui it 8-1
Interrupt and Exception ProCessingccoccciiiriiiiiiin it 8-3
{101 (=] ¢ 8]0) -3 PSP SPP PR 8-4
S oT=T o 11 Te] 4 |- T OO EPRT 8-4
UPD70616 EXCEPLION PrOCESSING ...uuvveiiiiiiieie ittt ettt e e s e s e aaeae s s e s e s eanaanaaes 8-5
SerioUS SYSIEM FAURS ..o 8-5
SyStEM FAUIS ...t e et e e e e e e e e ee e 8-5
Y e Vol @ [a1VZ 11Te =5 {eT-T o] o] o - T TP 8-5
Memory Management EXCEPLIONScvii i e et e e 8-6
INStrUCtioN EXCEPHIONS ... e e et 8-7
Arithmetic EXCEPLIONS .c.uiit et e e e e e e e e e eettneeaeesaes, 8-8
Software Debug EXCEPONSc.ooiiiiiiiicc e e 8-9
Change Execution Level EXCEPLIONScooiviiiiiiieiiiciiiiinir e e, 8-11
ASYNCIRTONOUS TTAPS «ovvutiii ittt e e e et e e ettt e e r e e e e reen e et s 8-11
Emulation Mode EXCEPLONS ..ocourii e e e e e 8-12
SOMWEAIE TIPS ..eeeeeeiieiieitiiii it aie s i e eeeeeseeteaeteeeeeae st e saasaeesaensaesesesebessban os e eeeeeeasessesensnnes 8-13
INtErrUPYEXCEPHON SLACK FOMMALSveivieeeeeeeeeeeeeee e et ettt eee e e et et e e et e e e ese e e 8-14
o Cel=T0 110] d T O Lo -1 O O PP 8-19
R =T-Y -1 SO TUTRPPPUUPPR 8-20
Interrupt/Exception NESHNG ..o e 8-21
Interrupt/EXCeption StacKS ..o 8-27
Section 9 Software Debug SUPPOrt ... 9-1
013 (0o (o] (T I - Vo - P PP PR PPRRRPRN 9-2
INStrUCHiON Trace CONIOLo et e et e ee et e e e e e reanas 9-2
INStruction Trace OPErationcooiiiiiiiiii i e e et e e et e e e s e e e e rr e ee e 9-2
InStruction TraCe Pendingooouiiiii i e e 9-2
UPDPSW. W INSTIUCHION L..eoniiiiiiiii it e 9-3
INSITUCHION Trace NOLE . ooiei it e 9-3
BreaKPOint TIAPS «..cooiiiiiii ittt et e 9-4

PRELIMINARY INFORMATION iv 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

AArESS TrAPS ..oouiiiitiiie ettt ettt et e et e e e e e 9-5
Address Trap OPErationcccoiiiiiiiiiniiie ettt e 9-5
Address Trap REGISIEISccccoviiiiiiiieeie e e e 9-5
AdAress Trap SEIUDcooeiiiiiieieee et e e e e e e 9-6
Address Trap GeNETAtiONoo.eioiuiiiiiee ettt e e e oo 9-7
Virtual/Physical Mode ADAress Trapsc..ooeeeeeeeeeeeeeeeeee e eees oo oo 9-7
Address Trap Stack COMENTScceeiiiiueiuiiiiieeecee e e e e 9-7
AdAress Trap NOTESuviiiiiiie it 9-8

Section 10 V20/V30 EMUIation Modecooeiiiiiiiiiicciec e 10-1

Virtual and Physical Address MOAESc.ooouiiouiiiiiieeeee e 10-1

EMUIALION MO ... e e 10-1
Program Status WOrd (PSW2)oouiiiiieeee et 10-2
Program Counter (PC)o..iiiii et e e e 10-4
VO EMUIAHION OPHON ...ooiiiiiiiiiiii e e et e e 10-4
Register AlIOCAHONooiiiiieie e e 10-4

Emulation Mode INStUCHION Stocoiiiiiiiiiioiie e 10-6
INSErUCtion Set SUMMATYcoiiiiiiiii et 10-6

Mode TranSHIONSocuiiiiii e e 10-8
Native Mode to EMUuIation MOdeceoiiiiiiiiiiii e 10-8
Emulation Mode 10 Native MOocoooiiiiiiiie e 10-9

MemOory AdAress SPACEccciiiiiiiiiiei et 10-9
Address Generationcooiiiiiiiie e 10-9

VO AAreSS SPACEeiiiiiiiiictee ettt e 10-10

EmMUIAtion Mode NOTESc.uiiiiiiiii e e 10-10

Section 11 Functional Redundancy Monitor (FRM)c...cccevviiiineeeeeeeeneen e 11-1

Fault Tolerant System Configurationcocoiiiii oot e 11-1

Functional Redundancy MONIOTccooiiiiiiiii oot 11-2

BUS Freeze INTEITUPL ... e ettt 11-3

FRM ADDICALIONS ...t e et e e, 11-4

BIDlIOGIaPNY .oovii e e 11-6

Appendix

Appendix A Instruction Set SUMMATYc.oiiiiiiii e, A-1

Appendix B INStruction FOrMAtSoeiiiiii e, B-1

Appendix C Addressing Mode ENCOdiNgScovvvviiiiiiiiiiie e C-1

1.0 v PRELIMINARY INFORMATION

PRELIMINARY INFORMATION

vi

uPD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTRODUCTION

Section 1
Introduction

The uPD706186 (VEB0) is the first member of a family of high performance CMOS 32-bit microprocessors. This section
introduces the major features and capabilities of the uPD70616.

V-Series

The V-Series is a set of original, high performance CMOS microprocessors. The V-Series consists of two distinct
families, a family of high integration 16-bit microprocessors and a family of high performance 32-bit microprocessors.

The high integration family consists of the uPD70108/116 (V20/V30) and the pPD70208/216 (V40/V50)
microprocessors. Using internal 16-bit data paths, these processors have been designed to improve system
performance and reduced power consumption while maintaining software compatibility with the previous generation of
16-bit microprocessors.

Figure 1-1. V-Series Microprocessors

Performance

1984 1985 1986 1987 se26

1.0 1-1 PRELIMINARY INFORMATION

INTRODUCTION uPD70616 PROGRAMMER'S REFERENCE MANUAL

The high performance family of 32-bit V-Series microprocessors extend the performance capabilities of the 16-bit
V-Series microprocessors. Beginning with the uPD70616 microprocessor, these VLSI devices have been designed
from scratch to take advantage of the ability to integrate nearly 400,000 transistors on a single die. The four main
objectives which drove the design of the pPD70616 architecture were:

» general purpose architecture

+ application hardware support

» expandable

+ high performance

These objectives were established in anticipation of the severe performance requirements that will be placed on 32-bit
microprocessors by the next generation of applications.

Currently, microprocessors can be found in a wide variety of applications. Because the range of applications is
continuing to grow larger, it is becoming increasing difficult for VLS| designers to predict what will be the requirements
of the next generation of machines. This suggests that the design of a microprocessor must take into account
flexibility, the ability to mold a microprocessor architecture into many different applications.

Support for high level languages is another design objective given the fact that software is increasingly written using
high level languages. Operating systems will also need assistance from the architecture as the complexity and
sophistication of both application and system software increases. Virtual memory is a necessary requirement as
program complexity grows. Without the protection facilities of a virtual memory system, the development, debug and
verification of a large software system would become nearly impossible.

For a variety of reasons, the next generation of applications will standardize on 32-bit architectures that can fit into each
market segment. In office automation, it is the ability to manipulate text and numbers that sets one microprocessor
over another. In the field of CAD/CAM, the ability to perform high speed numerical calculations dominates the other
uses for the systems. In artificial intelligence applications, management of large virtual address spaces and pointers
must be efficiently implemented. ‘

At the same time, new applications must be accommodated by the architecture. The conventional architectures which
are unable to adapt to an ever changing design environment will be quickly left behind. Microprocessors which do not
implement a general purpose architecture, orthogonality or application support are doomed to failure. The uPD70616
microprocessor has been designed with these goals in mind. Unlike other 32-bit processors which are based on
obsolete 8- or 16-bit architectures, the pPD70616 has introduced a new architecture rather than extending an
architecture that is unsuited for VLSI implementation.

PRELIMINARY INFORMATION 1-2 1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL INTRODUCTION

pPD70616 Architecture Overview

Generally speaking, the architecture of a computer refers to the structure and resources available to the programmer
and more specifically to the instruction set, register set and address spaces. Thus the uPD70616 architecture refers
to the uPD70616 microprocessor facilities and resources as viewed by the programmer. When the pPD70616
architecture is realized in silicon, it becomes an implementation of the architecture. Because of various economic and
technical restrictions, the complete architecture may not be fully realized until some later date.

Basic Architecture

The basic uPD70616 architecture is characterized by a general purpose register architecture based on thirty-two 32-
bit general purpose registers. The large instruction set is designed to be orthogonal and make full utilization for the
register resources. The large number of general purpose registers enables compilers to efficiently allocate registers to
improve performance.

The pPD70616 has four execution levels to allow hardware to distinguish between programs with different levels of
permissions. Level 0 has complete control of the hardware and is said to be privileged. The other three execution
levels are non-privileged and the capabilities of programs at these execution levels is restricted.

Figure 1-2 shows the set of uPD70616 registers, each being a full 32-bits in length. The register set is divided into
two parts, the program register set and the privileged register set. Use of the program register set is unrestricted but
system level permissions are required to access the privileged register set.

» Program Register Set

The program register set consists of the thirty-two general purpose registers, the PC (program counter)
and PSW (program status word). The general purpose registers are each identified by a register ID
ranging from 0 to 31 and can be used as temporary storage, accumulators, stacks, base and index
registers without restriction. General purpose registers can also be used with the floating point data type
making the register set truly versatile.

Of the general purpose registers, three are implicitly selected by instructions and have alternate names.
R31 is the SP (stack pointer) and points to the TOS (top of stack) for the current task context. R30 is the
FP (frame pointer) and points to the frame activation record of the current procedure context. R29 is
called the AP (argument pointer) and points to the list of arguments for the current procedure.

The PC is a 32-bit register that contains the address of the first byte of the current instruction.

The PSW is a 32-bit register which is shared by both the program and privileged register sets. The lower
halfword (16-bits) of the PSW contains the condition codes for integer and floating point operations. The
upper halfword of the PSW contains system information such as execution level and controls for the
software debug and maskable interrupts. The PSW is shown in Figure 1-3.

« Privileged Register Set

Privileged registers are accessible by programs executing at execution level 0 and are used primarily by
the operating system to manage the system. The privileged registers are broken down into four functional
groups:

— stack pointers

— memory management registers

~ system management registers

- software debug registers

1.0 1-3 PRELIMINARY INFORMATION

INTRODUCTION uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 1-2. uPD70616 Register Set

Program Register Set Privileged Register Set
31 0 31 0
R31 (SP:Stack Pointer) LOSP (Levet O Stack Pointer)
R30 (FP:Frame Pointer) L1SP (Level 1 Stack Pointen
R29 (AP:Argument Pointer) L2SP (Level 2 Stack Pointer)
R28 L3SP (Level 3 Stack Pointer)
R27 ISP (Interrupt Stack Pointer)
R26
R25 31 0
R24 [SBR (System Base Register) 1
R23
R22 31 0
21 [SYCW (System Control Word)]
R20 31 4]
Ao TR (Task Registen)
R TKCW (Task Control Word)
R17
R16 a
0
R15 [PIR (Processor D Register)]
R14
R13 31 0
R12 ATBRO (Area Table Base Register 0)
Ri1t ATLRO {Area Table Length Register 0)
R10 ATBR1 (Area Table Base Register 1)
R9 ATLR1 (Area Table Length Ragister 1)
R8 ATBR2 (Area Table Base Register 2)
R7 ATLR2 (Area Table Length Register 2)
R6 ATBR3 (Area Table Base Register 3)
R5 ATLRS3 (Area Table Length Register 3)
R4
RS 31 0
R2 TRMOD (Trap Mode Register)
A1 ADTRO (Address Trap Register 0)
RO ADTMRO (Address Trap Mask Register 0)
ADTR1 (Address Trap Register 1)
I31 PC (Program Counter) <i ADTMR1 (Address Trap Mask Register 1)
31 0 <Al 0
I PSW (Program Status Word) I l PSW2 (Program Status Word 2)

86-158

PRELIMINARY INFORMATION 1-4 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTRODUCTION

Figure 1-3. PSW Format
f¢———— Status Field ———+}4¢——— Control Field ————s}4—— Floating Point Field ——#{¢——— Integer Field ———|

31 30 29 28 27 26 25 24 18 17 16 12 11 10 9 8 3 2 1 0
AlA - JFIFIF]FIF
E|1]T]1 ITA]T cClO
ST EL 11Z]J]O{U]|P S|z
AAMSPP E|E]E violviolr Y|V I
p— I I L— Zero
Sign
Overflow
- Carry
Precision
Underflow
Overfiow
Zero Divide
Invalid Operation
L Trace Enable
L Address Trap Enable
Interrupt Enable

— Execution Level

Instruction Pending

Trace Pending

Interrupt Stack

Emulation Mode

Asynchronous Task Trap Active
Asynchronous System Trap Active

86-217

Each of the execution levels has its own stack pointer with a separate interrupt stack pointer for a
combined total of five stack pointers. The SP register is actually one of these registers depending on the
current execution level. Each time the execution level changes or an interrupt occurs, the uPD70616 will
automatically save the current stack pointer and switch to the new stack pointer.

The memory management registers are used to keep the base address and length information for the
memory resident address translation.tables. The memory management register set consists of four pairs
of area table base and length registers.

The system management registers are used to control to operation of the system. The task register points
to the task control block of the current task context while the task control word defines the operating
environment for the task. The system-wide operating environment for virtual address spaces and
asynchronous traps is contained in the system control word. The system base register holds the base
address of the system interrupt.exception vectors. PSW2 is the PSW used by emulation mode programs.

The five software debug registers are used for controlling address traps. One register is used as an
enable for the traps and the other four consist of two pairs of address and address mask registers.

« Instruction Formats

A uPD70616 instruction can range in length from 1 to 22 bytes depending on the type instruction, the
number of operands and the operand addressing modes. The uPD70616 is a two address machine with
the addressing mode assignment specified independently for each operand. Using independent
operand addressing modes, a single ADD opcode can be used to implement register-register, memory-
register and memory-memory operations.

1.0 1-5 PRELIMINARY INFORMATION

INTRODUCTION pPD70616 PROGRAMMER'S REFERENCE MANUAL

« Addressing Modes

A large number of powerful addressing modes is another distinguishing characteristic of the uPD70616
architecture. The uPD70616 has 21 addressing modes for byte addressable data and 18 addressing
modes for bit addressable data.

In addition to the standard addressing modes, other enhancements have been made. Three different
size displacements can be specified allowing an assembler to optimize the size of the displacement field.
Indirect memory addressing supports the use of pointers and any of the general purpose registers can
serve as a base or scaled index register. To promote the use of position independent PC relative
addressing, the PC can also be specified as a base register. Table 1-1 and Figure 1—4 depict the various
addressing modes available.

Table 1—-1. pPD70616 Addressing Modes

Addressing Mode Syntax
Register Rn
Register Indirect [Rn}]
Register Indirect Indexed [Rn](Rx)
Autoincrement [Rn+]
Autodecrement [Rn]
Displacement disp[Rn]
PC Displacement disp[PC}
Displacement Indexed disp[Rn](Rx)
PC Displacement Indexed disp[PC](Rx)
Displacement Indirect [disp[Rn]]
PC Displacement Indirect [disp[PC]]
Displacement Indirect Indexed [disp[Rn]](Rx)
PC Displacement Indirect Indexed [disp[PC]]1(Rx)
Double Displacement disp1 [disp2[{Rn]]
PC Double Displacement disp1 [disp2[PC]]
Direct Address /addr
Direct Address Indexed /addr (Rx)
Direct Address Deferred [/addr]
Direct Address Deferred Indexed [/addr](Rx)
Immediate #value
Immediate Quick #value (1-15)

PRELIMINARY INFORMATION 1-6

86218

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTRODUCTION
Figure 1-4. Addressing Mode Operations
Addressing Mode Operand Addressing Addressing Mode Operand Addressing
An Instruction _ Rn #value inst¥uction
T #value (0-15) e
—— fn " Instuction An Memory
on emory
T T I e S (rngra | 2
instruction Rn Memory An Memory
[Rn+] i [-Rn) %‘r
Instruction Rn Memory Insuction PC Memory
disp{ Rn] LIgl] o lwr disp[PC | LIl e
instruction Memory Insyuction PC Memory
disp{ R Rx) s "4 disp{ PC J(Rx) o |
7 7
Nxd{e Rxxic
instruction Rn Memory Memory insvuction PC Memory Memory
[disp{ Rn]] I 'MJ’" lmr f - [disp[PC]] ﬂwf J"
- A T pa
instruction Rn Memory Memory Ijntruciicn I PC Memory Memory
[disp{ Rn]]{ Rx) I lw e N,y e [disp[PC]](Rx) U e _J_’ N
h 4
Instruction Rn Memory Memory Iﬁsmcn’on PC Memory Memory
disp1[disp2[Rn] T f N disp1[disp2[PC]] LIl lm - _r
dispt P /dlspz e pu disp2
Ins¥uction Memory
Instruction Memory
/addr @————’ /addr(Rx) ol
) Insruction Memory Memory
Instuction Memory Memory >
[/addr } > [/addr Rx) N L aie

1.0

1-7

86 219

PRELIMINARY INFORMATION

INTRODUCTION

Virtual Memory Management

The uPD70616 incorporates an on-chip MMU (memory management unit) which maps each 4GB virtual address space
into a 16MB physical address space. The MMU permits each task to have an independent virtual address space or to
share a subset with one or more other tasks. Protection, preventing tasks with insufficient privilege from accessing
code or data, is also enforced by the MMU.

uPD70616 PROGRAMMER'S REFERENCE MANUAL

The linear 4GB virtual address space is divided into 4KB pages for the purpose of demand paging. Demand paging
permits portions of the virtual address to be swapped out to low cost secondary storage. This allows programs to be
written without regard to the amount of physical memory because the operating system and MMU provides an illusion
of a full 4GB physical memory.

« Address Space Structure

The size of a virtual address space can range as high as 4GB. An operating system is capable of managing
multiple virtual address spaces where each space is independent or shared as shown in Figure 1-6.
Address space sharing can be implemented at different levels depending on the individual requirements.

Each virtual address space is split into four 1GB sections. A section is the first unit of shared virtual
address space. For example, sections 10 and 11 can be common to all tasks and contain the system utility
and operating system programs while section 00 and 01 are unique to each task.

Each section is further divided into 1024 areas. An area is a 1MB region and can be shared between two
tasks and used for inter-task communication.

An area is broken down into 256 pages, each 4KB in size. The page is the basic unit of memory

management and the virtual memory facility is implemented by swapping pages.

Virtual Address Space

Figure 1-5. pPD70616 Address Space

(4GB)
Section Area Page
(1GB) (1MB) (4KB)
1 T aemtaor | 2l pPagecss | Offset 4095
secton | . Area1023 | Page 255 o oot 3094
'''''''''' Area 1022 ,»"' Page 254 ,."'
. 1"') o
10 3 .n" « |
section * *
Areai Page | Offsetn 1 byte
““““ . ",]
‘\.. . .‘n . “\ ®
01 ".‘ . “, . N N 3
section A R L Y Y R .
AN Area 1 ., Page 1
' . Offset 1
. Aead | Page0 | OFser0
00
section

PRELIMINARY INFORMATION

1-8

86-220

1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL

Operating
System

-

Shared
Application
Routines

+

Application
Tasks

« Protection Mechanisms

4GB

2GB

1GB

%

INTRODUCTION

Figure 1-6. Mulitiple Virtual Address Spaces

10
section
% Private
data/code
sharing
01
section /%
7
/ Task 4
00
section /ﬁ Task3
Task 2

Task 1

Task 0

86221

Protection mechanisms are implemented at the both the area and page levels. Area level protections
compare the current execution level with the execution level required for the particular access. Page level
protections are used to mark the page as readable, writable or executable. An access is permitted only
when both protection criteria have been satisfied, otherwise a memory management exception will occur.

1.0

1-9 PRELIMINARY INFORMATION

INTRODUCTION uPD70616 PROGRAMMER'S REFERENCE MANUAL

« Address Translation

When virtual mode is enabled, virtual addresses must be translated into physical addresses before the
access is performed. Address translation involves an area table register pair, an area table and a page
table. Refer to Figure 1-7 for an example of address translation.

Figure 1-7. Address Translation

31 30 29 20 19 12 0
L] | 1 T T L) L] L] L] L] T T L] L] L] L) L] ¥ T L] T T L] L} ¥ L4 L] L)
Virtual Address
l - l‘ Page Frame
Area Table Register Area Table Page Table
\—p{ ATBR/ATLR: o ATE- - o
%6-222

The 32-bit virtual address is split into fields for the purpose of address translation. First, the upper two bits
are used to identify the section by selecting one of the four area table registers pairs. The area tabel
register pair contains a the base address and length of the memory resident area table to be used in the
next step of the translation.

Using the base address from the previous step, bits 20:29 of the virtual address are used as the offset into
the area table to select the ATE (area table entry). The selected ATE contains the base address of the
page table to be used in the second level of translation and the permissions required to access this area.
If the access permissions are not met, the translation is aborted and an exception will occur.

Next, bits 12:19 of the virtual address are used as an offset in the page table to select a PTE (page table
entry). The PTE contains the physical base address of the page, whether it is physical present and the
page level access permissions.

It the page level protections are met, the access can occur and low order 12 bits of the virtual address are
concatenated with the page base address obtained from the PTE to form the physical memory address.

Address translation and the associated table lookups are an inherently slow process and a hardware assist
is required. Accesses to programs and data are generally sequential and localized. The uPD70616 can
take advantage of this and cache the last 16 address translations on-chip in a high speed TLB (translation
look-aside buffer). If the section, area and page ID fields match an entry in the TLB and the permissions
are satisfied, the address translation will occur immediately and without any performance penalty.

PRELIMINARY INFORMATION 1-10 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 1-8. Virtual - Physical Address Translation

INTRODUCTION

20 19 1211

0

T rr v v 7o Ty —r oot

) o 0

Section 1D

l_Paga Offset

—Page ID

—Area iD

Area Table Base Register 0
Area Table Base Register 1

Page Table

& Area Table Base Register 2
Area Table Base Register 3

Virtual Address Attributes Physical Address

Matchill

" Area Table

Real Page Number

Translation Lookaside Buffer

Processor Resident

1.0

4.KB Page
Frame

1-11

Memory Resident

86-203

PRELIMINARY INFORMATION

INTRODUCTION nPD70616 PROGRAMMER'S REFERENCE MANUAL

Data Types

The pPD70616 supporis a wide range of data types and instructions to operate on each data type. These data types
include not only the widely used integer and character string data types but also bit, bit field and bit string data types.
The uPD70616 also supports |EEE standard floating point arithmetic as part of the basic instruction set.

« Signed Integer

Signed integers are represented in two's complement format in byte (8-bit), halfword (16-bit), word (32-bit)
and doubleword (64-bit) sizes. A wide range of data transfer and arithmetic operations on signed integers
are supported.

» Unsigned Integer

Unsigned integers are available in byte (8-bit), halfword (16-bit), word (32-bit) and doubleword (64-bit)
sizes. A wide range of data transfer, arithmetic and logical operations on unsigned integers are
supported.

* Floating Point

The uPD70616 floating point data types and operations conform to the IEEE 754 standard. Floating point
data can be represented in either the short real (32-bit) or long real (64-bit) formats. Like integers, floating
point data can reside in any of the general purpose registers. Instruction set support for floating point data
types includes data transfer, arithmetic and conversion operations.

» Pointer
In the uPD70616 a pointer is represented as an unsigned 32-bit integer. Instruction set support for the
pointer data type allows calculation of the effective address of operands for parameter passing.

» Decimal
The decimal data type is used for calculations in BCD format. Addition, subtraction and conversion
instructions are available for the decimal data type.

+ Bit
The bit data type refers to a single bit within a word. Bits are typically used as Boolean variables and can be
set, cleared, complemented and tested.

+ Bit Field

Bit fields are variable length data structures that are a subset of the integer data types. Bit fields range
from 0 to 32 bits in length and are used to pack signed and unsigned integers. Instructions are available to
insent, extract and compare bit fields.

+ Bit String

Bit strings are variable length logical data structures ranging from 0 to 4 gigabits in length. Bit strings begin
and end on any arbitrary bit boundary. Any logical operation can be performed on bit strings as well as
searching bit strings for a 0 or 1 bit.

+ Character String

Character strings are used to efficiently manipulate text using either byte or halfword characters.
Operations on character data include data transfer, comparison and searching.

PRELIMINARY INFORMATION 1-12 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

~ 0~~~ IO

B0 O+ —

v — o

—w3-—-000

Q@S e~

Bit

Byte

Halfword

Word

Doubleword

Short Real

Long Real

Packed

Unpacked

Byte

Halfword

Bit Field

Bit String

Figure 1-9. Data Type Formats

31

TTITTTTITITY

TY I yrrryrrrrrey

. bt NUMbOr

TTTrTrrrYy

MSB LS8
15 0
Vll"l""'l‘l!
Ms8 LSB
31
'l!llllllllll[ll"!ll"“'ll""
MSB LSB
63
‘Il'l'lll‘lliIllll'!llTlllIllllll'IllII'll]II‘TIl!lrllllllll!lllll
MSB LSB
31
T T T T T T T YT T T Y
oxp mantissa
63

TITTTTTrTYT

oxp

LASRARARE RS REREEEEEREEEE S AR S RN

mantissa

7 0

T T

DH DL

15 0
LI LILIRJ LELIL LI
DL DH

A+n-1 A+n-2 b A+1
LS I S O A S 2 A 2 R B A A B A ELARAR R I AR §
D' c B A
v -
A+2n-2 A+2n-3 . A+l
TTY T T T[T I T Ty [T AT T[Ty T vrr[rrrrrey
8 A
7 A
IITTTTTIHIII:/ 14"'l''|'l-'‘|‘l'I'I'V'I'l"r!"!‘r‘l"l"ﬂ‘A
|4— length —pie offset >

o2z,

(g length

offset >

PRELIMINARY

INTRODUCTION

86-223

INFORMATION

INTRODUCTION

Instruction Set

Besides the comprehensive instruction set for each of the data types, the pPD70616 instruction set contains support
for high level languages, context switching and other applications. Instructions which manipulate system hardware or
data structures are privileged and require the processor to be at execution level 0.

Control Transfer

Control transfer instruction set support includes conditional and unconditional branches, looping and
subroutine call/return instructions.

Procedure Calling

Procedure calling is an important requirement for the efficient execution of high level languages. The
pPD70616 supports procedure calls and returns as well as instructions for the management of the local
stack frames. Figure 1-10 is an example of a typical procedure call and retumn.

Context Switching

Rapid switching of task contexts is a requirement of any multi-tasking operating system. The uPD70616
instruction set supports this requirement by loading and storing task contexts with a single instruction.

Virtual Memory Management

Virtual memory requires the maintenance of translation tables and the TLB (translation look-aside buffers).
A number of instructions are dedicated to read and update table entries, translate a virtual address to a
physical address and control the operation of the memory management unit.

&

input/Output

Input/output instructions are used to communicate with external peripheral devices in the I/O address
space. Peripherals can be accessed either using the standard I/O instructions or via the virtual I/O facility
by any instruction that references memory.

Multiprocessing

In order to support the efficient implementation of multiprocessor systems, the instruction set primitives
for test and set and compare and exchange operations are provided.

PRELIMINARY INFORMATION 1-14

uPD70616 F;ROGRAMMER'S REFERENCE MANUAL

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 1-10. Procedure Call/Return

DN ﬁ'“.“.”.”.6”
parameters E
od—s :
AP -
— Catt
PC et
- —
General Purpose Registers - ;Uth I
- - ultiple
] K2
FP o1+ FP o
[~ - Prepare
L Local Variables . ?:3:;
' 52
sP o—l——
Procedure
- Temporary Storage Area -~ Execution
System Support Features

Return

Pop
Multiple

Dispose

INTRODUCTION

86 224

System support features are those facilities that assist in the development of both system and application software.
The uPD70616 provides a number of aids for the implementation of operating systems and the debug of programs.

» Asynchronous Traps

Asynchronous traps are designed to simplify the implementation of multi-tasking operating systems.
Many operating system services are interrupt driven and a dilemma is presented by how to inform the
operating system of asynchronous events in a well defined and consistent manner. Asynchronous traps

provide this consistent interface between operating system routines.

This communication between operating system routines is called an AST (Asynchronous System Trap).
The ATT (Asynchronous Task Trap) is a similar facility used by the operating system to inform a task of an

event.

1.0 1-15 PRELIMINARY INFORMATION

INTRODUCTION uPD70616 PROGRAMMER'S REFERENCE MANUAL

- Software Debug Support

As the size and complexity of application and system software grows, so to does the task of debugging
the program. The uPD70616 architecture provides three powerful software debug aids designed to
minimize the amount of time spent debugging programs. Instruction trace and instruction breakpoints are
standard tools used in software debug. In addition, a powerful tool called address traps is also available.
Address traps combine a region of addresses with the type access (read/write/execute). Each memory
access is checked and a trap will occur whenever the trap criteria is met. The capabilities are further
enhanced by providing two independent sets of address trap registers for use in software debug.

Figure 1-11. Address Traps

Memory Memory Program Addrees Trap
Reference Handler

L -
—) —

L /
L L

86-225

Z Active address trap range

PRELIMINARY INFORMATION 1-16 1.0

pnPD70616 PROGRAMMER'S REFERENCE MANUAL INTRODUCTION

pPD70616 Architecture Implementation
The pPD70616 is the first realization of the V-Series 32-bit architecture in a high performance CMOS VLS| process.

Processor Features

In addition to the implementation of the 32-bit V-Series architecture, the uPD70616 includes the following additional
features:

« Emulation Mode

Emulation mode allows software developed for the uPD70108/116 (V20/V30) microprocessors to be
executed. Emulation mode is directly compatible with object code and no re-assembly or re-compliation is
required. During emulation mode, all of the software debug, memory management and protection
mechanisms are fully functional, thus multiple emulation mode programs can co-exist in the same virtual
address space without interference.

* Functional Redundancy Monitor (FRM)

A functional redundancy monitor is a technique used to increase the reliability of a system by allowing a
redundant processor to check the operation of the master processor. Using FRM techniques, the design
of fault tolerant computing systems is simplified.

Figure 1-12. Functional Redundancy Monitor

Status/Control
Outputs

Checker Mode

. uPD70616

/‘\ \
Fault Output
Master Mode / i mﬁ
uPD70616 ,\
’ &/Dma Bus
N
/Address Bus
System Hatt
(BFREZ)

86-226

1.0 1-17 PRELIMINARY INFORMATION

INTRODUCTION

Pipeline Operation

The concurrent processing of multiple instructions is made possible by using independent functional units with
interlocks. Extensive instruction pipelining is used in the uPD70616 to keep each functional unit busy and maximize

the instruction throughput. Each instruction utilizes the following functional blocks during the course of execution:

PFU (Pre-fetch Unit)

The pre-fetch unit is designed to load the 16 byte instruction queue from external memory during idle bus
periods. Since instruction execution is generally a sequential process, the latency to fetch an instruction
from memory can be reduced to zero if the instruction is found in the pre-fetch queue.

IDU (Instruction Decode Unit)

Pre-fetched instructions are fed to the instruction decode unit to be decoded. Each irfistruction is
examined for operands and the addressing mode information is stripped out and sent to the effective
address generator to calculate the addresses for processing. The decoded instruction is then queued up
for processing by the execution unit.

EAG (Effective Address Generator)

The effective address generator uses a high speed mutti-way adder to quickly compute the virtual address
of an operand and sends it to the memory management unit for translation.

MMU (Memory Management Unit)

In the virtual mode, addresses must be converted to a physical address. Using a 16 entry TLB (transiation
look-aside buffer) and pipelining the address translation, the effective address translation time is zero.
Meanwhile, in parallel with the address translation, the access permission is verified. The output of the
MMU is a physical address for the bus control unit.

BCU (Bus Control Unit)
The bus control unit acts the interface for each internal bus requester. Additional logic allows the BCU to

re-run faulty bus cycles in the event of an memory ECC error and to use a short cycle bus mode for
accessing fast cache memories. The functional redundancy monitor is also implemented in the BCU.

EXU (Execution Unit)

The actual execution of an instruction occurs in the execution unit. Instruction execution begins when
the instruction has been decoded and all operands have been fetched. The EXU is composed of a 32-bit
microprogrammable ALU with the thirty-two general purpose registers, and a high speed barrel shifter.

PRELIMINARY INFORMATION 1-18

uPD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

INTRODUCTION

Figure 1-13. puPD70616 Functional Blocks and Pipeline

PFU BCU
Prefetch Data
Queue Bus
Intertace
IDU EAG \} MMU
N/
Decoder >
Effective > Translation > Address
Address Lookaside Bus
Generator Buffer Interface
Queue
<7 N/ .
SEQ
: N |
General
Barrel
ROM Purpose ALU f
. Registers Shifter
EXU b, P
86-293

1-19

PRELIMINARY INFORMATION

INTRODUCTION

Notational Conventions

The terminology and abbreviations used in this document are defined for the reader's convenience in this section.

Numerical Values

nPD70616 PROGRAMMER'S REFERENCE MANUAL

Numerical values are normally expressed as decimal numbers, but it is sometimes clearer to use other notations. The
suffixes 'b’ and 'H' will sometimes be used to indicate numbers written in binary (base 2) and in hexidecimal (base 16).
This provides three ways of writing numbers. For example, the (decimal) number 118 can be represented as

01110110b or 76H.

The prefixes "kilo", "mega" and "giga" are also widely employed. They correspond to the following values:

Table 1-2. Numeric Prefix Values

Symbol| Prefix Value
K kilo 1,024 = 210
M | mega 1,048,576 = 2%°
G giga 1,073,741,824 = 2%°

Data Organization

The fundamental unit for the addressing of data in memory is the byte. Data that spans multiple bytes are addressed
by the address of the least significant byte.

- Byte Representation

A byte consists of eight bits which are numbered from right to left starting with 0. When a byte contains an
integer, the MSB (most significant bit) is bit 7 and the LSB (least significant bit) is bit 0.

« Multiple Byte Representations

When representing larger data types, the ordering of bits and bytes is again from right to left. The
rightmast bit is the LSB and the leftmost bit is the MSB. The rightmost byte is the least significant byte and

Figure 1-14. Bit Position within a Byte

its address is used to access the data.

PRELIMINARY INFORMATION

1-20

86-229

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

INTRODUCTION
Figure 1-15. Multiple Byte Representations
7 0
Be [
15 0
Haitword [
31 0
Word | . . .]
63 0
Doubleword | .
79 0
Semi-quadword [.]
127 o
Quadword l " .

86-231
« Bit Expressions

Bits are expressed by a bit number. When expressing several consecutive bits within a register or memory
location, the bit field expression is used. For example, the bits from bit position 3 to bit position 5 can be

identified as bits 3:5.
- Register Expressions

Registers are fixed length internal data storage locations. Like memory, registers consist of bits and bytes
starting from and numbered from the left. Data stored in a register has the same representation as when
that data is stored in memory.

Figure 1-16. Register Representation

16 15 8 7 0

Y T T T T T L N T T T T T T T

T T T T T T T

Memory Organization

» Addresses

Each byte in memory is identified by an address. Starting from address 0, addresses are assigned
sequentially up to address 4,294,967,295 (232 — 1, or 4 gigabytes). Before address translation, an
address is a virtual address while after address translation it is a memory or I/O physical address.

+ Data Organization

Data is stored in memory in byte units with the address of the lowest byte used to address the data. For
example, in Figure 1-18, a word is a four byte data structure and is addressed by the least significant byte
of the word.

1.0 1-21 PRELIMINARY INFORMATION

INTRODUCTION uPD70616 PROGRAMMER'S REFERENCE MANUAL

» Bit Data

Data types that use a bit addressing mode require a 35-bit address. A bit address consists of 32 bits used
to address the byte while the remaining 3 bits are used to select the bit within the byte. A bit address can
be formed by simply appending the bit offset within a byte to the byte address.

« Data in Memory

When the address of data is a multiple of the size of the data type in bytes, the data is said to be aligned.
Byte data is always aligned and halfword, word, doubleword and quadword data are aligned when they
have addresses that are a multiples of 2, 4, 8 and 16 respectively. Semi-quadword data is a special case
and is aligned on quadword boundaries.

In some special cases, instructions and data must be aligned. However, generally there are no alignment
requirements and only the performance is affected by not aligning data on its boundary.

Abbreviations and Special Terminology

- uPD70616

The terms pPD70616 architecture and pnPD70616 microprocessor are used throughout this document.
The uPD70616 architecture is used to refer to the specification of the 32-bit V-Series microprocessor
family. The term uPD70616 microprocessor is used to refer to the silicon implementation of this
architecture.

« UNPREDICTABLE

The results of an operation designated by the word "UNPREDICTABLE" may vary, depending on the
implementation of the processor. Such operations are considered abnormal and illegal, and there is no
guarantee that the operation will be handled consistently across all microprocessors.

+ MBZ (Must Be Zero)
MBZ indicates that all the bits in the specified data field must be 0. If software sets a value which is non-
zero, the results are UNPREDICTABLE.

« RFU (Reserved for Future Use)

RFU indicates that a data field is reserved for future use by NEC. Fields marked as RFU are implicitly
selected as MBZ. Software which uses such fields is not portable and the results of such use are
UNPREDICTABLE.

PRELIMINARY INFORMATION 1-22 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

INTRODUCTION
Figure 1-17. Address Space Representation
4GB
3GB
2GB Addresses
1GB
0
86-233
Figure 1-18. Byte Addressed Data
4
Addresses
1
Quadword Semi-quadword Doubleword Word Halfword Byte

1.0 1-23 PRELIMINARY INFORMATION

INTRODUCTION

PRELIMINARY INFORMATION

1-24

nPD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL DATA TYPES

Section 2
Data Types

This section describes the hardware supported data types of the uPD70616 microprocessor. A total of eight separate
fixed and variable length data types are supported by the LtPD70616 microprocessor. Fixed length and variable
length data types are distinguished by two major characteristics. Fixed length data types have a size characteristic that
is constant and determined by the instruction opcodes. Variable length data types are dynamic data structures whose
length can vary during program execution.

Another distinguishing characteristic is that the fixed length data types may reside in either the general purpose
register set or in memory. Variable length data types can be represented in their entirety only as memory resident data
types.

Fixed Length Data Types
+ Integer
« Unsigned Integer
- Bit
« Floating Point
« Decimal

Variable Length Data Types
» Character String
* Bit String
« Bit Field

Also important is the organization of the data types. Data type organization describes the layout of a data type in a
register or in memory. The uPD70616 architecture is flexible in that both byte and bit addressing modes are available.
Byte addressing uses the byte (8-bits) as the basic addressing unit and supports the byte aligned data types. Bit
addressing is a special addressing mode using the bit as the basic addressing unit and supports the bit aligned data
types (bit fields and bit strings).

Byte Addressing

The addressing model for the uPD70616 virtual address space is based on the unit of a byte. The pPD70616 address
space is viewed as a sequence of bytes starting from location 0 and continuing linearly to the location 232 - 1. All
memory management, instruction fetches, stack operations and software debug operations use byte addresses.

7 0 7 [[0

T T T Y T T al T T T T T Aj T T T T T T T T T T T T \J

86174

A+3 A+2 A+1 A

1.0 2-1 PRELIMINARY INFORMATION

DATA TYPES uPD70616 PROGRAMMER'S REFERENCE MANUAL

Byte addressing is also used for fixed length data types and for the variable length character string data type. These
data types share the characteristic that they are always aligned on a byte boundary, irregardless of the size of the data
type. Since byte addresses are 32-bits wide, a byte address corresponds to the location of a byte anywhere within a
four gigabyte virtual address space.

31 0
T

T T T Y T T] T T T T Y Y ¥ T ¥ Y T T T T Al T T T T T T

Byte Address

Byte aligned memory operands are physically accessed using one of four access types, each of which can be located
anywhere within the virtual address space without restriction. However, instruction throughput is optimized when an
access type is aligned on a boundary that is a multiple of its size in bytes.

Byte

A byte consists of 8 contiguous bits starting on any byte boundary. The individual bits within a byte are labeled 0 to 7
with bit 0 designated as the LSB (least significant bit) and bit 7 as the MSB (most significant bit). A byte is completely
identified by its address.

86-181

Hatftword

A halfword consists of 16 contiguous bits starting on any byte boundary. The individual bits within a byte are labeled 0
to 15 with bit 0 designated as the LSB (least significant bit) and bit 15 as the MSB (most significant bit). A halftword
occupies two contiguous bytes and is identified by the address of the low order byte.

A+1 A

86182

Word

A word consists of 32 contiguous bits starting on any byte boundary. The individual bits within a byte are labeled 0 to
31 with bit 0 designated as the LSB (least significant bit) and bit 31 as the MSB (most significant bit). A word occupies
four contiguous bytes and is identified by the address of the low order byte.

31 24 23 16 15 8 7 0

T T T T T T T T T v Y ¥ T T T T T A\j L] T T T T Y T T T T

A+3 A+2 A+1 A 518

PRELIMINARY INFORMATION 2-2 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL DATA TYPES

Doubleword

A doubleword consists of 64 contiguous bits starting on any byte boundary. The individual bits within a byte are
labeled 0 to 63 with bit 0 designated as the LSB (least significant bit) and bit 63 as the MSB (most significant bit). A
doubleword occupies eight contiguous bytes and is identified by the address of the low order byte.

A+7 A+6 A+5 A+4
63 56 55 48 47 40 39 22
T L] L] L] Ll L) L] T L L] T Ll T Ll 1 L] L] L] Ll 1 L] Ll L L] L T L]
T %= 6 15 5 7)
A+3 A+2 A+1 A o184

Fixed length data types can also reside in one the uPD70616 general purpose registers. In place of a byte address, a
register number is used to identify the to be the source or destination for an operand. All fixed length data types can fit
in a register or pair of consecutive registers. The organization of the four data access types in the register set is shown
below:

7 0
Unaffected Byte Rn
15 0
Unaffecte Halfword Rn
31 Ll Ll L) L] L4 T o
Word Rn
63 32
MSB : Rn+1
Doubleword
LSB | Rn
31,J0

The lengths of the byte and halfword access types are shorter than the register length. These access types are right
justified within the register. Only the lower portion of the register corresponding to the access type is significant and
the upper portion will remain unaffected.

In the case of the doubleword access type, the operand occupies a pair of general purpose registers. The lower
numbered register contains the least significant word while the higher numbered register contains the most significant
word. However, since R31 cannot be used as the least significant register of a doubleword register pair, the results of
using R31 as the source or destination operand of a doubleword access type is unpredictable.

1.0 < 2-3 PRELIMINARY INFORMATION

DATA TYPES uPD70616 PROGRAMMER'S REFERENCE MANUAL

Bit Addressing

Bit addressing is employed to address data structures that are bit aligned, i.e., are aligned on an arbitrary bit boundary.
However, unlike byte addressing which uses the byte as the atomic unit for memory addressing, bit addressing uses
the bit as the basic addressing unit. Instead of using a four gigabyte virtual address space, bit addressing views the
virtual address space as a thirty-two gigabit address space.

A I R Y9293
m o M o M mm

86-176

To address an arbitrary bit within a thirty-two gigabit address space requires a 35-bit address since there are 232 bytes,
each containing eight bits. A bit address is composed of two separate components, a 32-bit byte base address and a
32-bit bit offset. These components are combined to generate the 35-bit bit address.

L] T T T T T T T T T T T T T T T ¥ T T T T T T T v T T T T T T T T T

Bit Address

The byte address is zero extended on the right to 35-bit length. The bwb (bit within byte) field is initialized to zero to
address the first bit (bit 0) within the byte. The sign extended 32-bit bit offset is added to form the bit address.

24 3 2 014
T

T T T T T T T T T T T T Y T T Y Y T T \J T T T T T T T T T T T T

Byte Address bwb

86178

bwb - bit within byte

Once formed, the upper 32-bits of the bit address is used to identify the byte address of the operand with the lower
three bits identifying the bit offset within the byte. The process of bit address generation is shown below:

34 3 2 0
T L] 1 L] L] T T T T T T] T T T T T T L] T ¥ L] T L] ¥ \J T T T T T) T
Byte Address 0 0O
34 31 0
v . T T T T T T T T L T T T T T LB L) T L] T T L] T 1 T T T 1 T T L} T T
sign .
extension Bit Offset
+
34 3 2 0
Byte Address bwb

86179

PRELIMINARY INFORMATION 2-4 1.0

puPD70616 PROGRAMMER'S REFERENCE MANUAL DATA TYPES

Data Types

The pPD70616 recognizes a wide variety data types, typical of those utilized in most -applications. Supported data
types are listed below in Table 2.1.

Table 2.1. 1 PD70616 Data Types

Data Type Length
Bit Data bit 1—bit
byte 8-bits
halfword 16-bits
Integer word 32-bits
doubleword 64-bits
byte 8-bits
Unsigned Integer halfword 16-bits
word 32-bits
doubleword 64-bits
)) short real 32-bits
Floating Point long real 54—bits
byte string 8-bit characters
) 1 to 4 gigacharacters
Character String halfword string 16-bit characters
1 to 2 gigacharacters
Bit String bit variable
1 to 4 gigabits
Bit Field bit variable
0 to 32 bits

Signed Integers

86180

Signed integers are expressed in two's complement binary notation. Four signed integer lengths are supported,
byte, halfword, word and doubleword. Signed integer representation consists of a sign bit field and a magnitude field.
The MSB (most significant bit) of a signed integer is the sign bit and indicates whether the number is positive or
negative. The magnitude field contains the absolute value or magnitude of the signed integer.

Data Type
Byte
Halfword
Word
Doubleword

1.0

Range

-128 ~ 127

-32768 ~ 32767

-2147483648 ~ 2147483647
-9223372036854775808 ~ 9223372036854775807

2-5 PRELIMINARY INFORMATION

DATA TYPES nPD70616 PROGRAMMER'S REFERENCE MANUAL

Unsigned Integers

Unsigned integers represent natural numbers (non-negative integers) in binary notation. There are four unsigned
integer data types: byte, halfword, word, and doubleword. Unsigned integers consist of only a magnitude field which
is the same size as the data type. Unsigned integers are also used to represent the logical data types used for the bit-
wise logical operations.

Data Type Range

Byte 0~ 255
Halfword 0 ~ 65535

Word 0 ~ 4294967295

Doubleword 0 ~ 18446744073709551615

Bit

Bit data is often used to efficiently store data for control purposes. In the uPD70616, bit data is identified by a byte
base address and a separate bit offset. The byte base address component selects the address of the word that
contains the bit in question. The addressing mode is used to determine whether the operand is in a general purpose
register (register addressing mode) or memory (all other addressing modes).

The bit offset is then used to identify the particular bit within the register/word that is to be manipulated. The bit offset
is specified as a value in the range of [0..31]. Specifying any other value for the bit offset will cause an exception.

31 Jd « 0
L T T

T T T \ T T T T T T T T T T T v v T J T T T v

b

As a fixed length data type, bit data can reside in either a register or in memory. lt is also possible to manipulate bit data
using the bit string or bit field data types by specifying a length of 1 for these variable length data types.

Binary Floating Point

Binary floating point formats provide a wide range of numerical values over a specified level of precision. Floating point
data types are useful for scientific and engineering calculations, numerical control, and any application requiring high
performance numeric calculations such as graphics. The pnPD70616 microprocessor supports basic floating point
operations on two |[EEE compatible binary floating point formats.

Short Real

The short real data type is a 32-bit binary floating point representation conforming to the IEEE single precision format.
The short real format consists of a mantissa sign bit, an 8-bit biased exponent and a 23-bit mantissa as shown below:

31 30 20 22 0

s exponent mantissa

86187

PRELIMINARY INFORMATION 2-6 1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL DATA TYPES

Long Real

The long real data type is a 64-bit binary floating point representation conforming to the IEEE double precision format.
The long real format consists of a mantissa sign bit, an 11-bit biased exponent and a 52-bit mantissa as shown below:

63 62 62 61 0

s exponent mantissa

Decimal Data Type

The decimal data type is used for the manipulation of both packed and unpacked decimal numeric strings. The
decimal data type divides each byte into two 4-bit fields (nibbles). In the packed decimal representation, each 4-bit
field is assumed to contain a valid BCD (binary code decimal) digit in the range [0..9]. In the unpacked (or zoned)
decimal representation, only the lower 4-bit field is assumed to contain a digit and the higher 4-bit bit field is called the
zone field.

When a nibble is expected to contain a digit, only the valid BCD values [0..9] can be specified. Any other value will
cause an illegal decimal format exception to occur. There is no restriction on the contents of the zone field.

Character Strings

Two types of character strings are recognized by the uPD70616 microprocessor, byte character strings and halfword
character strings. Byte character strings are used to express standard ASCII text. Halfword character strings are also
supported to express text needing a much wider range of characters than available with an 8-bit character set.

Instructions are provided for operating on character strings of either type and include:

s transfer
* comparison
* scanning

* skipping

Being a variable length data structure, a character string is fully defined by:

« the address of the start of the string
 the number of characters in the string

In addition to the above attributes, a character string must also obey the following restriction:
» the sum of the starting address and the length of a character string (in bytes) must be less than 232 — 1

Note that the number of characters and the length of a byte character string are the same while a halfword character
has a byte length twice the number of characters in the string.

Some instruction permit specifying the direction of string processing. The direction within a character string in which
addresses become larger is called the upward direction while the direction in which addresses become smaller is the
downward direction. In all cases the ordering of characters within the string is in the upward (increasing addresses)
direction. Only the direction of processing changes.

1.0 2-7 PRELIMINARY INFORMATION

DATA TYPES uPD70616 PROGRAMMER'S REFERENCE MANUAL

Examples of both byte and halfword character strings are shown below.
Byte character string (N=4)

7 07 07 0 7 0
!ei ‘t' lyl 'B'
A+3 A+2 A+1 A
<«+——— Upward Direction Downward Direction ~———»

86-189

Halfword character string (N=2)

15 ¢ 15 0
lol |6'
A+2 A
<«+—— Upward Direction Downward Direction ————»
86-190

Bit Fields

Bit fields are a variable length data structure used to represent signed (two's complement notation) and unsigned
integers in a compact format. An instance of the bit field data type can take any length between 0 and 32 bits, starting
at any bit position in memory and subject only to the constraint that the bit field not span a length of greater than four
bytes. As with the integer data types, bit 0 of a bit field is the least significant bit and in the case of signed bit fields, the
most significant bit is the sign bit.

Being a variable length data structure, a bit field is fully defined by:

« the bit address (B) of the start of the bit field
= the length in bits

- length >

T T T T T T

bit field

86191

A+3 A+2 B A+1 A

T

An integer x can be expressed in a bit field of length N if and only if

—2(N-1) < x < 2(N-1) (signed)
0 <x < 2(N-1) (unsigned)

The integer value of a bit field of length 0 is zero.

PRELIMINARY INFORMATION 2-8 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL DATA TYPES

Bit Strings

A bit string is a variable length logical data structure containing 0 to 232 — 1 bits. Applications of bit strings abound in
applications as diverse as window management in bit-mapped graphic displays and for implementing set operations in
high level languages.

Bit strings are treated as a logical data type with a full complement of monadic and dyadic operations defined. Being a
variable length data structure, a bit string consists of the following two components:

+ bit address (B) of the start of the bit string
« the length in bits

k-

A+3 A+2 B A+1 A

T

Like the character strings, the pPD70616 instruction set permits specifying the direction of bit string processing. The
direction within a bit string in which addresses become larger is called the upward direction while the direction in which
addresses become smaller is the downward direction.

Stacks
.(. stack is last-in-first-out (LIFO) data structure. The uPD70616 uses a push-down stack for a number of purposes
ncluding:

» subroutine return addresses
* saving program state during an interrupt or exception
« allocation of local variables during a procedure call

In the nPD70616, register R31 is the default stack pointer and is always assumed to be pointing to the current top of
the stack (TOS). Before pushing new data on the stack, the stack is first decremented before copying the operand to
the new TOS. In a similar manner, a stack pop operation will remove the current TOS and then increment the stack

pointer.

The default stack pointer (R31) is assumed to a word (32-bit wide) stack. Any general purpose register can also be
used to implement a stack by means of the autoincrement and autodecrement addressing modes.

1.0 2-9 PRELIMINARY INFORMATION

DATA TYPES

PRELIMINARY INFORMATION

2-10

uPD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL REGISTER SET

Section 3
Register Set

The nPD70616 has a large number of general purpose and special purpose registers which are described in this
section. The uPD70616 register set is divided into two categories. The program register set represents the set
resources available to the application or user while the system programmer has in addition to the program register set
the full resources of the privileged register set.

The program register set consists of the following 32-bit registers:

* general purpose registers..........cccceveevervviienenennns RO - R28

» argument pointer (AP)......ccccceviiiiiniienirre, R29

o frame pointer (FP).....ccoiviiiieeiiee e, R30

o stack pointer (SP)....ccooovvviiieriiie e R31

* Program COUNEET.......covveviiieeiiieiiieiiieeeieeeesineenes PC

» program status word (lower halfword).................... PSW[15:0]

The privileged register set consists of the following additional registers (grouped by function):
Address Translation

+ areatable baseregisters 0 —3.........coceieiiirninnnins ATBRO ~ ATBR3
= areatable length registers 0-3..........coevvvveeerrinnn. ATLRO - ATLR3

Stack Pointers
» level 0 —3 stack pointers.........cccoeeeeeeiiiiiinieneennnnn, LOSP ~ L3SP

* interrupt stack pointer........c.coceeeiiiiiniiniiininnieinn, ISP

Debugging Registers

* trapmode register......cccccciiiiiiiiiii s TRMOD
» addresstrapregisters........ccooeevvviiiiiiiiiiiinn ADTRO - ADTR1
+ address trap mask registers.........c.coovvvivinieeniennnnn. ADTMRO — ADTMR1

Miscellaneous Registers

+ program status word (upper halfword)................... PSWI[31:16]
+ systembase register...........c.ceiiiiiiiiiciinn . SBR

+ systemcontrol word..............co i, SYCW

o taskregister.......cccviiiviiiii i TR

o taskcontrolword........cc.ccccoeeiiiiiiiiiiini TKCW

o processor IDregister.........cccoevviiniiievivinicc e, PID

» V20/V30 emulation mode PSW..........ccocceeeeenennnn. PSw2

1.0 3-1 PRELIMINARY INFORMATION

REGISTER SET uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 3-1. uPD70616 Register Set

Program Register Set Privileged Register Set
31 4] 31 0
R31 (SP:Stack Pointer) LOSP (Level O Stack Pointer)
R30 (FP:Frame Pointer) L1SP (Level 1 Stack Pointer)
R29 (AP:Argument Pointer) L2SP (Level 2 Stack Pointer)
R28 L3SP (Level 3 Stack Pointer)
R27 ISP (Interrupt Stack Pointer)
R26
R25 39 0
R24 I SBR (System Base Register) |
R23
R22 31 0
= I SYCW (System Control Word) I
R20
31 0
R19 -
TR (Task Register)
R18
TKCW (Task Contro! Word)
R17
R16
R15 2 g
[PIR (Processor ID Register)]
Ri4
R13 2 0
Ri2 ATBRO (Area Table Base Register 0)
R11 ATLRO (Area Table Length Register 0)
R10 ATBR1 (Area Table Base Register 1)
R9 ATLR1 (Area Table Length Register 1)
R8 ATBR2 (Area Table Base Register 2)
R7 ATLR2 (Area Table Length Register 2)
Ré ATBR3 (Area Table Base Register 3)
R5 ATLR3 (Area Table Length Register 3)
R4
R3
31 0
R2 TRMOD (Trap Mode Register)
Rt ADTRO (Address Trap Register 0)
Ro ADTMRO (Address Trap Mask Register 0)
ADTR1 (Address Trap Register 1)
31 [¢]
ADTMR1 (Add Trap Mask Register 1
l PC (Program Counter)] (Address Trap e)
31 0 31 0
[PSW (Program Status Word) J PSW?2 (Program Status Word 2) J

86-158

PRELIMINARY INFORMATION 3-2 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL REGISTER SET

Program Register Set

The program register set consists of the general purpose registers, the program counter (PC) and the program status
word (PSW). Each of these registers is 32-bits wide and are available for use by application programs.

General Purpose Registers

The general purpose register set consists of thirty-two registers (R0 — R31) each 32-bits in width. A general purpose
register can be used as an accumulator, base register, index register or to hold intermediate calculations. General
purpose registers can be used at any execution level without restriction.

Three of the general purpose registers are reserved for specific purposes by certain instructions. R29 is called the
argument pointer (AP) and is used to point to the list of procedure arguments by the CALL instruction. R30 is the
frame pointer (FP) and is used to point to the current stack frame (work area for local variables and parameters) for
currently executing procedure. R31 is the stack pointer (SP) and contains a pointer to the word on the current top
stack {TOS). ‘

The stack pointer is not a single register, but rather a cache of five registers separate stack pointers, one for each of
the four execution levels and an interrupt stack pointer. The current execution level and external events such as
interrupt and exceptions determine which of the five stack pointers is in use as the current stack pointer.

In addition to the AP, FP, and SP registers, other general purpose registers are required by string instructions to allow
the instruction to resumed following an interrupt or exception. In this case, registers are reserved for use starting from
R28 and allocated in a downward direction.

‘rogram Counter

he program counter (PC) is a register which contains the memory address of the first byte of the instruction currently
oeing executed. The PC contains a virtual address in the virtual address mode and a physical address in the real
address mode.

The PC is a 32-bit register which cannot be directly read or written. However, the contents of the PC can be examined
by the instruction

movea 0[pc 1, dest -- compute the effective address using the
-- pc with no displacement

bits31:0 PC The address of the first byte of the currently executing instruction. The PC contains a
virtual address in the virtual address mode, a physical address in the real address
mode.

Program Status Word

The program status word (PSW) is a 32-bit register containing program status and control information. The PSW is

divided into upper and lower halfwords with the upper halfword being modified only by means of the privileged

UPDPSW.W instruction. The lower halfword of the PSW has two fields containing the integer and floating point
ondition codes. The upper halfword contains the processor control and status fields for the currently executing task.

1.0 3-3 PRELIMINARY INFORMATION

REGISTER SET

nPD70616 PROGRAMMER'S REFERENCE MANUAL

The contents of the PSW can be read regardless of the execution level. The PSW is modified according to the

following conditions:

+ the integer and floating point condition codes can be modified using the UPDPSW.H instruction
» the control and condition code fields can be modified at execution level 0 by the privileged UPDPSW.W

instruction

+ the status field is modified by the execution of certain instructions such as CHLVL and RETIS

3130292827262524231‘r'1918171615l '13121110987 ' 4 3 2 1 0
Alalel e | & ilalT FIELEIFIEL " lelo
ilMSPPEL RFU elele| RFU \'/SSLDJ; RFU vivlis|z
B6- 160
bit 0 Z The Z (zero) flag indicates if the results of the operation were zero.
Z=0 result is non-zero
Z=1 result is zero
bit 1 S The S (sign) flag indicates if the results are negative (signed) or if the MSB is set
(unsigned).
S=0 result is positive or zero or MSB is 0
S=1 result is negative or MSB is set
bit 2 oV The OV (overflow) flag indicates if an overflow occurred.
Oov=0 no overflow
OovV=1 overflow
bit 3 cyY The CY (carry) flag indicates if a carry or borrow was generated as a result of the
operation.
CY=0 no carry (borrow) generated
CY=1 carry {(borrow) was generated
bits 4.7 RFU Reserved for future use
bit 8 FPR The FPR (precision) flag indicates the exactness of a floating point operation.
FPR=0 exact result
FPR =1 inexact result
bit 9 FUD The FUD (underflow) flag indicates if an underflow occurred as the result of a floating

bit 10 FOV

point operation.
FUD=0 no floating point underflow
FUD =1 floating point underflow occurred

The FOV (overflow) flag indicates whether an overflow occurred as a result of a
floating point operation.

FOV =0 no floating point overflow
FOV =1 floating point overflow occurred

PRELIMINARY INFORMATION 3-4

1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL REGISTER SET

bit 11 FZD

bit 12 FIV

bits 13:15 RFU

bit 16 TE
bit 17 AE
bit 18 IE

bits 19:23 RFU

bits 24:25 EL
bit 26 P
bit 27 TP
bit 28 IS

1.0

The FZD (zero divide) flag indicates if a zero division took place.

FZD=0 no floating point zero divide
FZD=1 a floating point zero divide occurred

The FIV (invalid) flag indicates the occurrence of an invalid floating point operation.
FIV=0 no invalid operation occurred

FIV=1 invalid operation occurred

Reserved for future use

The TE (trace enable) flag enables and disables instruction trace.

TE=0 instruction trace disabled
TE =1 instruction trace enabled

The AE (address trap enable) flag is a global enable/disable for the address trap logic.

AE=0 address traps disabled
AE =1 address traps enabled

The IE (interrupt enable) flag permits software to selectively enable and disable
maskable interrupts.

IE=0 maskable interrupts disabled
IE =1 maskable interrupts enabled
Reserved for future use

The EL (execution level) field contains the value of the current execution level.

EL =00 execution level 0 (privileged)
EL = 01 execution level 1
EL =10 execution level 2
EL = 11 execution level 3

The IP (instruction pending) flag indicates whether or not an instruction has been
interrupted and should be resumed.

P=0 no. instruction pending

IP=1 instruction pending

The TP (trace pending) flag controls the guarantees the occurance of a single
instruction trace for each instruction.

TP=0 instruction trace not pending

TP =1 instruction trace pending

The IS (interrupt stack) flag indicates whether the current processor context is in the
interrupt space.

IS=0 interrupt stack inactive
IS=1 interrupt stack active
3-5 PRELIMINARY INFORMATION

REGISTER SET

bit 29

bit 30

bit 31

EM

ATA

ASA

pPD70616 PROGRAMMER'S REFERENCE MANUAL

The EM (emulation mode) flag indicates the current processor mode.

EM=0 native mode
EM =1 emulation mode

The ATA (asynchronous task trap active) flag indicate whether an asynchronous task
trap processing is in progress.

ATA=0 ATT processing not in progress

ATA=1 ATT processing in progress

The ASA (asynchronous system trap active) flag indicate whether an asynchronous
system trap processing is in progress.

ASA =0 AST processing not in progress
ASA =1 AST processing in progress

PRELIMINARY INFORMATION 3-6 _ 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Privileged Register Set

REGISTER SET

Twenty-two 32-bit registers make up the uPD70616 privileged register set. The privileged register set controls the

execution environment and are accessible only to programs executing at privilege level 0.

The contents of privileged registers are examined and modified using the load privileged register (LDPR) and store
privileged register (STPR) instructions. Each privileged register is assigned a register ID number (figure 3-2) which is
used to identify the source or destination privileged register.

Figure 3-2. Pnivileged Register ID Numbers

Permissible Operations
1D Privileged Register
LDPR STPR

0 ISP Interrupt Stack Pointer o} (o]
1 LOSP Level 0 Stack Pointer o] 0]
2 L1SP Level 1 Stack Pointer (0] O
3 L2SP Level 2 Stack Pointer o] o]
4 L3SP Level 3 Stack Pointer o} O
5 SBR System Base Register (@) (o]
6 TR Task Register - (0]
7 SYCW System Control Word O @]
8 TKCW Task Control Word (0] . O
9 PIR Processor ID Register - o)
10-14 Reserved for future use X X
15 PSW2 Emulation Mode Program Status Word O O
16 ATBRO Area Table Base Register 0 (o} (o]
17 ATLRO Area Table Length Register 0 O 0]
18 ATBR1 Area Table Base Register 1 @] (o]
19 ATLR1 Area Table Length Register 1 (0] (@]
20 ATBR2 Area Table Base Register 2 0] (0]
21 ATLR2 Area Table Length Register 2 (@] 0]
22 ATBR3 Area Table Base Register 3 (@) 0]
23 ATLR3 Area Table Length Register 3 0] (0]
24 TRMOD Trap Mode Register 0] o
25 ADTRO Address Trap Register 0 O O
26 ADTR1 Address Trap Register 1 o} O
27 ADTMRO Address Trap Mask Register 0 (o) 0]
28 ADTMR1 Address Trap Mask Register 1 o (6]
29-31 Reserved for future use X X

85-050

In addition to the LDPR and STPR instructions, other privileged instructions may also implicitly select a privileged

register as an instruction operand.

1.0

3-7

PRELIMINARY INFORMATION

REGISTER SET uPD70616 PROGRAMMER'S REFERENCE MANUAL

Stack Pointers

The stack pointer (R31) is part of the program register set and contains the virtual address of the current top of stack.
In actuality, there is a cache of five independent stack pointers, one for each of the four execution levels and a
separate interrupt stack pointer. The stack pointer selected when R31 is referenced by an instruction is determined
by the value of the PSW IS and EL fields as defined below:

IS EL Selected Stack Pointer
0 00 level 0 stack pointer

0 01 level 1 stack pointer

0 10 level 2 stack pointer

0 11 level 3 stack pointer

1 00 interrupt stack pointer
1 01 undefined

1 10 undefined

1 11 undefined

Programs at execution level 0 can access any of the stack pointers by means of the LDPR and STPR instructions.
Load and store operations to R31 only affect the stack pointer for the current execution level.

31 0
T Y T T T T ™7 T T T 7T T T T T T T

SP

86161

bits 0:31 SP The SP (stack pointer) contains the 32-bit virtual address to the current top of stack.

System Base Register

The System Base Register (SBR) contains the pointer to the first entry of the system base table. The system base
table is a table of vectors used for interrupt and exception processing. The system base register contains the physical
address of the start of this table which must be aligned on a page boundary.

31 24 23 12 11 0
T T T T T T T T T T T T T v v T T T T T T T T T T T Y T

0 00O0OO0OODUO SBA 0 000O0OOCOOOOOO

86 162

bits 0:31 SBA The SBA (system base address) is the physical address of the system base table.
The system base table is aligned on a page boundary and the twelve low order bits
(bits 0:11) must be zero, otherwise the results are UNPREDICTABLE. The upper
eight bits (bits 24:31) are unused by the uPD70616 but should zero for compatibility
with future microprocessors.

PRELIMINARY INFORMATION 3-8 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Task Register
The Task Register (TR) holds the virtual address of the task control block (TCB) for the currently installed context. The

Task Register is a 32-bit read-only register and is loaded automatically by the load task context instruction.

31

TCBB 00

bits 0:31

TCBB The TCBB (Task Control Block Base) is the virtual address of the TCB for the current

Task Control Word

The Task Control Word (TKCW) contains task specific information and is swapped in and out out as part of the task

context.

1.0

context. A task control block must be aligned on a word boundary, thus TCBB field
(bits 0:1) must be zero, otherwise the results are UNPREDICTABLE.

16_15 13 12 10 9 8 7 6 5 4 3 2 1 0
L] T L) T L] L]) A A L] T T T ¥ o F F F F F R R Ly
RFU ATT RFU TI11Z|(VIU|PIF|D} RD
MITITIT|T|TjU} I

bits 0:1

bit 2

bit 3

bit 4

bit 5

RD

RDI

RFU

FPT

FUT

The RD (float rounding control) field controls the direction of rounding during floating
point calculations.

RD =00 round toward nearest
RD =01 round toward —e

RD =10 round toward -+

RD =11 round toward zero

The RDI (integer rounding control) field controls the direction of rounding during
floating point to integer conversions.

RDI=0 use RD field rounding mode
RDI =1 round toward zero

Reserved for future use

The FPT (floating point precision trap enable) flag selects the desired mode for the
handling of precision errors.

FPT=0 floating point precision traps disabled
FPT =1 floating point precision traps enabled

The FUT (floating point underflow trap enable) flag selects the desired mode for the
handling a floating point underflow condition.

FUT=0 floating point underflow traps disabled
FUT =1 floating point underflow traps enabled

3-9 PRELIMINARY INFORMATION

REGISTER SET

REGISTER SET uPD70616 PROGRAMMER'S REFERENCE MANUAL

bit 6 FVT The FVT (floating point overflow trap enable) flag selects the desired mode for the
handling of overflow errors.

FVT=0 floating point overflow traps disabled
FVT =1 floating point overflow traps enabled

bit 7 FZT The FZT (floating point zero divide trap enable) flag selects the desired mode for the
handling of a zero floating point divisor.

FZT=0 floating point zero divide traps disabled
FZT =1 floating point zero divide traps enabled

bit 8 FIT The FIT (floating point invalid operation trap enable) flag selects the desired mode for
the handling an invalid floating point operation.

FIT=0 invalid floating point operation traps disabled
FIT=1 invalid floating point operation traps enabled

bit 9 OTM The OTM (operand trap mask) flag controls the handling of reserved floating point
operands such as infinities or NaNs.

OTM =0 trapping enabled
OTM =1 trapping disabled

This flag has a different than other flags associated with floating point operation traps.
This field is cleared to 0 in the uPD70616 microprocessor.

bits 10:12 RFU Reserved for future use

bits 13:15 ATT The ATT (asynchronous task trap level) field contains the value of the execution level
required to trigger an asynchronous task trap (ATT).

ATT[15:113] =
0 0 0 level 0 ATT
0 0 1 level 1 ATT
0 1 0 level 2 ATT
o 1 1 level 3 ATT
1 0 0 ATT disabled
1 0 1 ATT disabled
1 1 0 ATT disabled
1 1 1 ATT disabled

bits 16:31 RFU Reserved for future use

PRELIMINARY INFORMATION 3-10 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL

System Control Word
The System Control Word (SYCW) is the system-wide register for the control of the operating environment.

31

16 15 122 1"
T L

REGISTER SET

T T T T T Y T T

RFU ATRSI

CT>D|~

T< o

1.0

bit 0

bits 1:3

bits 4:6

bits 8:11

VM

RFU
AST

SPSI

86165

The VM (virtual mode) field controls the operating mode of the processor.

VM=0 physical address mode
VM =1 virtual address mode

Reserved for future use

The AST (asynchronous system trap level) field contains the value of the execution
level required to trigger an asynchronous system trap (AST).

AST[64]=
0 0 0 level 0 AST
0 0 1 level 1 AST
0 1 0 level 2 AST
o 1 1 level 3 AST
1 0 O AST disabled
1 0 1 AST disabled
1 1 0 AST disabled
1 1 1 AST disabled

The SPSI (stack point switching inhibited) field controls the change of the stack

pointers during context switching.

SPSI[8]=
0 level 0 stack pointer is fixed
1 level 0 stack pointer is switched

SPSI[9]=
0 level 1 stack pointer is fixed
1 level 1 stack pointer is switched

SPSI[10] =
0 level 2 stack pointer is fixed
1 level 2 stack pointer is switched

SPSI[11]=
0 level 3 stack pointer is fixed
1 level 3 stack pointer is switched

3-11

PRELIMINARY INFORMATION

REGISTER SET uPD70616 PROGRAMMER'S REFERENCE MANUAL

bits 12:15 ATRSI The ATRSI (area table register switching inhibited) field controls the change of the
area table registers during context switching.

ATRSI[12] =

0 the section 00 area table registers are fixed

1 the section 00 area table registers are switched
ATRSI[13]=

0 the section 01 area table registers are fixed

1 the section 01 area table registers are switched
ATRSI|[14]=

0 the section 10 area table registers are fixed

1 the section 10 area table registers are switched
ATRSI[15] =

0 the section 11 area table registers are fixed

1 the section 11 area table registers are switched

bits 16:31 RFU Reserved for future use

Processor ID Register
The Processor ID Register (PIR) is a read-only register containing identification information about the processor.

bits 0:7 NECRV This field is reserved for use by NEC.

bits8:15 PT The PT (processor type) field contains information identifying the CPU.

bits 16:31 RFU Reserved for future use

The contents of the PIR register for the pPD70616 (V60) microprocessor is

31 16 15 8 7 0

T T T T T T v T Y ¥ ¥ T T T T T T T T T T T T T T

o 0o 0 0o 0o 00 00 0 OO0 O0C6O OO0 11T 1 0 000 O0}|- - - - - - =

Area Table Registers

The uPD70616 includes a on-chip demand paged memory management unit for applications requiring a large virtual
address space (refer to section 4 for detailed information). The virtual address is divided into four one gigabyte
sections. Each section has a pair of registers defining the location and size of the associated area tables. Since the
area table base (A\TBRO-ATBR3) registers and area table length registers (ATLRO-ATLR3) are used as pair, they are
commonly referred to as area table registers (ATBR/ATLR).

PRELIMINARY INFORMATION 3-12 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL REGISTER SET

Area Table Base Registers

The four Area Table Base Registers (ATBR0O-ATBR3) contain the base address and control information for managing
the four area tables.

31.......2423.-ﬁ.‘-1r|vwﬁ ——————t '3210

0 0000 OO0 O ATB gov

bit 0 \ The V (valid) field determines if the contents of the area table registers are valid. An
exception will occur if an address translation is attempted using an invalid ATBR/ATLR
pair.

bit 1 D The D (direction) field determines the direction of growth for this section.
D=0 growth direction is positive (increasing addresses)
D=1 growth direction is negative (decreasing addresses)

bit 2 RFU Reserved for future use

bits3:31 ATB The ATB (area table base address) is a 29-bit physical address of the first area table
' entry for the associated section. The lower order three address bits (bits 0:2) are zero
and the area table must be aligned on a doubleword boundary. The high order eight
bits (bits 24:31) are ignored by the uPD70616 microprocessor but must be zero for
compatibility with future versions.

Area Table Length Registers

The four Area Table Length Registers (ATLRO-ATLR3) contain information about the size of the associated area table
as shown below.

T T T T T T T T T

RFU LOS RFU

36-168

bits 0:2 RFU Reserved for future use

bits 3:12 LOS The LOS (limit of section) field is used by the hardware to determine the number of
valid area table entries in an area table. If the D bit is cleared (positive growth
direction), area table entries from 0 < n < LOS are considered valid. If the D bit is set
(negative growth direction), area table entries in the range LOS < n < 1023 are valid.

bits 13:31 RFU Reserved for future use

1.0 3-13 PRELIMINARY INFORMATION

REGISTER SET pPD70616 PROGRAMMER'S REFERENCE MANUAL

Address Trap Registers

The five address trap registers provide a powerful tool for the debugging and verification of software. These registers
can be programmed so that an exception (refer to section 9 for details) occurs when a matching selected and access
type is generated. The five address trap registers are:

» trap mode register
» trap address registers
» trap address mask registers

Trap Mode Register
The trap mode register specifies what kinds of memory access (read, write and execute), if any, are to generate traps.

31 12 11 10 9 8 4 3 2 1

RFU EIR|W RFU E|R|W

cmXjo

86170

bit 0 RFU Reserved for future use

bit 1 w The W (write) field controls the trapping of a write access into the region defined by
the ADTRO/ADTMRO registers.
W=0 ADTRO write access traps disabled
W=1 ADTRO write access traps enabled

bit 2 R The R (read) field controls the trapping of a write access into the region defined by the
ADTRO/ADTMRO registers.
R=0 ADTRO read access traps disabled
R=1 ADTRO read access traps enabled

bit 3 E The E (execute) field controls the trapping of a write access into the region defined by
the ADTRO/ADTMRO registers.

E=0 ADTRO execute access traps disabled
E=1 ADTRO execute access traps enabled

bits 4:8 RFU Reserved for future use

bit 9 W The W (write) field controls the trapping of a write access into the region defined by
the ADTR1/ADTMR1 registers.
W=0 ADTR1 write access traps disabled
W=1 ADTR1 write access traps enabled

bit 10 R The R (read) field controls the trapping of a write access into the region defined by the
ADTR1/ADTMR1 registers.

R=0 ADTR1 read access traps disabled
R=1 ADTR1 read access traps enabled

PRELIMINARY INFORMATION 3-14 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL REGISTER SET

bit 11 E The E (execute) field controls the trapping of a write access into the region defined by
the ADTR1/ADTMR1 registers.

E=0 ADTR1 execute access traps disabled
E=1 ADTR1 execute access traps enabled

bits 12:31 RFU Reserved for future use

Address Mask Registers

The Address Trap Registers (ADTR0/ADTR1) are used to specify the base address of the range of addresses to be
trapped.

86-171

bits0:31 TA The TA (trap address) field holds the target virtual address to cause a trap.

Address Trap Mask Registers

The Address Trap Mask Registers (ADTMRO/ADTMR1) are used to mark address bits in the associated ADTR register
as "don't care”, allowing accesses in a range of addresses to be trapped.

86-172

bit 0:31 TAM The TAM (trap address mask) field contains the mask pattern used to specify a range
of trap addresses. Note that the lower two bits of the TAM field (bits 0:1) must be set,
otherwise the results are UNPREDICTABLE.

Program Status Word 2

Program Status Word 2 (PSW?2) functions as the V20/V30 emulation mode program status word. Refer to section 10
for details on the operation of this register.

31 30 16 16 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
C L T T T T T T T T T T D | B R c
T RFU 111111V]l E R|S|Z}o c o|P {1 v
L R K

86173

1.0 3-15 PRELIMINARY INFORMATION

REGISTER SET uPD70616 PROGRAMMER'S REFERENCE MANUAL

PRELIMINARY INFORMATION 3-16 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

Section 4
Address Spaces

This section describes the configuration and operation of the different uPD70616 address spaces. The uPD70616
microprocessor provides three separate address spaces:

* a sixteen megabyte (16MB) memory address space

+ a sixteen megabyte (16MB) I/O address space

« afour gigabyte (4GB) virtual address space

The implementation of the four gigabyte virtual address space is supported by an on-chip memory management unit
(MMU). Memory management is utilized to give each program or task the illusion of exclusive access to a four gigabyte
(4 billion byte) linear address space. A virtual address space is mapped onto the memory address space (physical
memory addresses) or /O address space (peripheral device addresses) by the MMU in a process known as address
translation. Address translation is a two-level process where a virtual address is converted to a physical address (in
either the memory or I/O spaces) and all associated permissions are verified prior to the actual execution of the bus
cycle.

Introduction

The memory address space uses the physical addresses of memory devices and limits the size to the maximum
number of addressable bytes of memory. Since the uPD70616 microprocessor has twenty-four external address
lines, the memory address space ranges from physical address 0 (0x000000) to an upper address of 224 — 1
#O0xFFFFFF) in units of one byte. Because most systems do not implement a full sixteen megabyte memory address
space since the actual size of the physical memory sub-system is determined by the application. There are no
requirements for the alignment of data within the memory address space.

The I/O address space is used to access and control peripheral devices. Like the memory address space, the /O
address space uses all of the uPD70616 address lines and supports a 16 megabyte address space. The /O address
space is accessed by the execution of I/O instructions or by mapping a portion of the virtual address into the 1/O
address space.

The virtual address space is a much larger address space using 32-bit virtual addresses. By the process of address
translation, the virtual address space is mapped onto one of the physical address spaces by the memory management
unit. To aid in the task of managing such a large address space, the virtual address space is paged using a four
kilobyte (4KB) page size. '

1.0 4-1 PRELIMINARY INFORMATION

ADDRESS SPACES

Virtual Address Space

nPD70616 PROGRAMMER'S REFERENCE MANUAL

The virtual address space is viewed by programs as a byte addressable four gigabyte (232 bytes) linear address space.

Figure 4-1. Virtual Address Space
4GB

3GB

2GB

1GB

PRELIMINARY INFORMATION

OFFFFFFFFH

Addresses

00000000H

86193

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

Sections

The tour gigabyte virtual address space is divided into four one gigabyte (1GB) sections. The lowest address section
is the 00 section and the remaining sections are called the 01, 10, and 11 sections respectively.

In the pPD70616 microprocessor, a section is a unit of sharing for a common virtual space in a system employing
multiple virtual spaces.

Figure 4-2. Sections

4GB OFFFFFFFFH
11
section
3GB
10
section 4
2GB Addresses
01
section
1GB
00
section
4] 00000000H

1.0 4-3 PRELIMINARY INFCRMATION

ADDRESS SPACES pPD70616 PROGRAMMER'S REFERENCE MANUAL

Areas

Each section is divided into 1024 areas. Each area is one megabyte (1MB) in size . The lowest numbered area within a
section is area 0 and numbering proceeds up to the last area, area 1023.

The area permits protection of system resources and private sharing of virtual address space at the task level.

Figure 4-3. Areas

4GB OFFFFFFFFH
3GB
2GB 27637073 Addresses
[]
ot :
section .
area 1
1GB area 0
° 00000000H

86-196

PRELIMINARY INFORMATION 4-4 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

Pages

Each area consists of 256 pages, each page four kilobytes (4KB) in size. Pages are numbered from page 0 in
ascending order to page 255 within an area.

The page is the smallest unit of virtual memory management. Pages are also the unit of mapping a portion of the virtual
space into the I/O address space.

Figure 4-4. Pages

4GB OFFFFFFFFH
3GB
2GB o5 7053 Addresses
L]
01 .
section .
area 1
1GB 11 e o @ |
|
page 0 —/V ¥ page 255
page 1 —-——/
0 00000000H

1.0 4-5 PRELIMINARY INFORMATION

ADDRESS SPACES uPD70616 PROGRAMMER'S REFERENCE MANUAL

Sections

A section is a 1GB segment of the virtual address space and is the basic memory management unit for a system having
multiple virtual spaces. Consider the following virtual memory configuration:

« section 11.........oeeeee. operating system

* section 10........ccuvvnees common system and utilities
» section O1..........ceeeeis task control information

+ section 00.......ccceeees task work region

In this example, all tasks share the virtual space defined by section 10 and 11 and have private virtual spaces defined
by sections 00 and 01.

The pPD70616 microprocessor places no restrictions on the assignment of virtual spaces to tasks. Each task can
have a unique virtual space or multiple tasks can share a common virtual address space. When several tasks share a
virtual space, the virtual space (defined by one or more area table register pairs) remains static while the tasks are
swapped in and out of the processor. Virtual spaces are switched only when the virtual spaces differ between tasks.
Because the operating system is shared by all tasks, it can reside in a fixed section. Fixing of a section is selected by
the ATRSI fields in the SYCW (System Control Word).

Section Length

A section need not occupy the entire 1 GB virtual address space and is usually much smaller. The uPD70616 can limit
the size of a section such that the number and size of the address translation tables is minimized. Setting the size of a
section requires specifying a length of section (LOS) value in the area table register.

The LOS field selects the maximum number of areas that comprise a section. Along with the D (direction) bit, the LOS
field determines which areas are defined and whether growth is from the bottom or top of the section. When the D bit
is cleared, the growth direction is positive and areas are measured from the base of the section (area 0) and continuing
1o area LOS-1. When the D bit is set, the growth direction is negative and areas are allocated from the top of the
section (area 1023) and continue down to area 1023-LOS.

Legitimate area table references require the following conditions be met:

» positive growth area offset < LOS
» negative growth area offset 2 LOS

An attempt to reference an area outside the these regions will cause a Section Length Violation exception. Refer to
figure 4-5 for details of section limits and organization.

Table 4-1. Section Limits and Ranges
Positive Growth Direction Negative Growth Direction
Los Areas Range Areas Range
LOS =0 1 area area0 1024 areas areas 1023 -0
LOS =1 2 areas areas 0 -1 1023 areas areas 1023 -1
LOS = 1023 1024 areas areas 0 — 1023 1 area area 1023

PRELIMINARY INFORMATION

86-197

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

Figure 4-5. Section Limits and Ranges

Growth Direction Positive Negative

<— LOS /////<—LOS
;;///
/.

V4

D Effective section

‘Undefined Sections ~

A section which has not been defined is called an undefined section. A section is considered to be undefined if the V
(valid) bit in the associated area table register is cleared. An Invalid Section exception will be raised if an attempt to
access an undefined section is made.

Areas

An area is a 1TMB segment of the virtual address space and is available for private sharing of a virtual space such as
between two tasks. An area can be shared by simply copying the area table entry.

The area is also a unit of protection between tasks. Both execution level and access types are checked prior to a
references to an area. Swapping of entire areas is also supported.

Area Length

An area need not occupy the entire 1 MB virtual address space. The uPD70616 can limit the size of an area such that
the number and size of the page tables is minimized. Setting the size of a area requires specifying a length of area
(LOA) value in the area table entry (ATE).

The LOA field selects the maximum number of pages that comprise an area. Along with the ATE D (direction) bit, the
LOA field determines which pages are defined and whether growth is from the bottom or top of the area. When the D
bit is cleared, the growth direction is positive and pages are allocated from the base of the area (page 0) and continuing
to page LOA-1. When the D bit is set, the growth direction is negative and pages are measured from the top of the
area (page 255) and continuing down to area 255-LOA.

1.0 4-7 : PRELIMINARY INFORMATION

ADDRESS SPACES

Legitimate page table references require the following conditions be met:

* positive growth -
* negative growth

page offset < LOA
page offset 2 LOA

uPD70616 PROGRAMMER'S REFERENCE MANUAL

An attempt to reference an page outside these regions will cause a Area Length Violation exception. Refer to

figure 4-6 for details of area limits and organization.

Table 4-2. Area Limits and Ranges
Positive Growth Direction Negative Growth Direction
LOA
Pages Range Pages Range
LOA=0 1 page page 0 256 pages pages 255 -0
LOA = 1 2 pages pages 01 255 pages pages 255 — 1
LOA = 255 256 pages pages 0 — 255 1 page page 255
86-200
Figure 4-6. Area Limits and Ranges
Growth Direction Positive Negative
/
/ / / /
%
Addresses //
L/
<« LOA / / / £ «— LoA
/
/A
7//
/A
/ / / /
D Effective area
86190

PRELIMINARY INFORMATION

4-8

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

Protection

Protection and separation of tasks from each other and the operating system is one of the primary advantages of a
vitual memory system. Protection mechanisms enhance the operation of the system by detecting and preventing
attempts by tasks to access programs and data without first having established the necessary permissions. The
uPD70616 protection mechanisms are implemented using three levels. First an execution level is established which
determines the relative trustworthiness of a task. A check of execution level and access type permission are
performed at the area level while an independent access type permission check is performed again at the page level.

Execution Levels

The execution level of a task determines whether a task is privileged or non-privileged. The execution level (EL) is a 2-
bit field in the PSW register which contains the current execution level. Execution levels are numbered from 0 to 3
with level 0 being the most privileged and level 3 being the least privileged. Programs execution at level 0 are said to
be privileged and can execute the entire uPD70616 instruction set. Programs executing at other execution levels
(levels 1, 2 and 3) are are said to be non-privileged and attempts to execute a privileged instruction will cause an
exception. In a typical system, the operating system kernel is executed at level 0 while tasks and non-privileged
operating system utilities are executed at levels 1 to 3.

Area Protection

Protection for an area (1MB region) is defined by the corresponding entry in the area table. Area level protection is
specified independently for each access method (Read, Write and Execute) by a 2-bit field. Each of these protection
three fields contain the minimum execution level necessary to allow access to the area. For example, if

Read level.............. 2
Write level............... 0
Execute level.......... 1
are specified, then access to the area by program execution level is:
level 0 Read, Write and Execute
level 1 Read and Execute
level 2 Read
level 3 no access

The area protection mechanisms provide a flexible means to restrict access to an area by execution level and access
type.

Page Protections

Page protection defines the permissions required to access a page (4KB) and are specified in the corresponding
page table entry. Page protections permit or deny access on the basis of contents of the page. For example, if the
page protections are

Read true
Write true
Execute false

then the contents of the page are readable and writable but not executable.

An access is possible only when both area and page permissions have been granted. Any attempt at access without
both sets of permissions will cause an exception. Protection mechanisms are enabled only when the processor is
operating in the virtual mode. In the physical address mode, all protection mechanisms are disabled and no
exceptions occur.

1.0 4-9 PRELIMINARY INFORMATION

ADDRESS SPACES pnPD70616 PROGRAMMER'S REFERENCE MANUAL

Memory Address Space

The memory address space is the space all physical memory accesses occur in and defines the maximum amount of
addressable memory. Because of the restrictions imposed on the memory address space by the processor model and
and system requirements, the memory address space will vary from system to system. The uPD70616 microprocessor
has a memory address space of sixteen megabytes (16MB) starting from address 0x000000 and proceeding linearly to
an upper address of OxFFFFFF in units of a single byte.

The uPD70616 can access the memory address space from both the virtual and physical modes. In the physical
address mode, a logical address and physical address are the same and are output without modification. In virtual
mode, the virtual address is first translated to a physical address before being output. The selection of virtual/physical
addresses is done by the SYCW register (refer to section 3 for details).

Previously, all descriptions have assumed operation in the virtual address mode. When operated in the physical
address mode the following address space differences should be noted:

only one address space

no protection

address size is restricted
system/processor dependent design

The uPD70616 instruction set is fully functional in the physical address mode. However, because a physical memory
address is 24-bits, the upper eight bits of an address (bits 24:31) must be zero (MBZ). The nPD70616 will tolerate the
upper order eight bits becoming non-zero during effective address calculation but the results may be unpredictable.

O Address Space

The 1/O address space is used for the placement and control of peripheral devices without requiring the reservation of
a portion of the memory address space. Like the memory address space, the I/O address space is 16MB in size with
addresses ranging from 0x000000 to OxFFFFFFFF in byte units. The valid /0O address space access ranges are
completely determined by each individual system.

Two ditferent methods are provided to generate 1/O space accesses to maximize system software flexibility. The first
approach uses the traditional method of dedicated I/O instructions to generate /0 address space accesses. The
alternate approach uses the memory management and address translation logic to map a portion of the virtual space
into the 1/O address space.

/O Space Access

I/QO space accesses are always generated by the execution of the privileged IN and OUT instructions. An /O port
address is specified as a 32-bit operand but because of the external address bus size restriction, bits 24:31 of a port
address must be zero. The operation using an /O port address outside the range 0x00000000 to Ox00FFFFFF is
unpredictable.

Virtual Address Space Mapping

Placement of /0 devices in the memory address space {(memory-mapped I/O) is an old technique to allow the use any
instruction that references memory to manipulate 1/0O ports at any execution level. The uPD70616 permits a new form
of IO peripheral access which maps a portion of the virtual address space into the I/O address space using the memory
management logic.

PRELIMINARY INFORMATION 4-10 1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL ' ADDRESS SPACES

The I/O mapping process is defined by:

unit of mapping

The mapping of the virtual address space to the I/O address space is done using the page as the basic unit of
mapping. A 4KB segment of the virtual space is I/O mapped by setting the | bit within the corresponding page
table entry. The uPD70616 has 4096 I/O pages within the 16MB /O address space.

access type

Access to an I/O mapped page is controlled by the read and write permissions defined for the page. An execute
access is undefined for an /0 mapped page and if attempted will cause an exception.

protection

The area table entry execution level permissions operate identically when compared to a memory-mapped page.
Both read and write execution levels are independently specified.

privilege

By /0 mapping a page of virtual space, the area table entries control which tasks can access to the /O device. This
allows non-privileged tasks to perform I/O accesses on a task by task basis as determined by the operating system.

Multiple Virtual Spaces

A multitasking operating system presents a dichotomy. Each installed task must be provided with an independent
virtual address spaces for protection and separation from other tasks in the system while at the same time there are
common operating system services which are required to be shared by all tasks in the system. The uPD70616
microprocessor solves this dichotomy by allowing tasks to share a portion of their virtual address space.

Virtual address spaces can be shared at the section, area or page level. The operating system virtual space can be
wshared at the section level by dedicating section 11 (1GB) as a common section and using sections 00, 01 and 10 for a
total of 3GB of independent virtual space.

Virtual space need not be shared among all tasks on a global basis. Private sharing of virtual address space (such as a
UNIX fork) can be accomplished by using the area as the basis for sharing. An example of a multiple virtual address
spaces is shown in figure 4-7.

1.0

4-11 PRELIMINARY INFORMATION

ADDRESS SPACES pPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 4-7. Multiple Virtual Address Spaces

o i
%/
3cB ///ﬁ

% Task 2 virtual address space

SSSSSS

Utiity lgction /
Section
//;
2GB

sharing

section

Individual

ask

TTTTT

1.0

[\

PRELIMINARY INFORMATION 4-1

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

Address Translation

The pPD70616 microprocessor transiates virtual addresses using the on-chip memory management unit. Normally,
address translation requires the uPD70616 firmware to translate an address using the on-chip memory management
registers (area table base and length registers) and the memory resident translation tables (area table/page table).

Address Translation Method Reference Information

l_— area table register pair

Normal Translation area table

. (firmware) I
page table

Address Translation

Translation Look-aside Buffer (T{B) =———————meme—mm TLB cONtents
(hardware)

86-202

Address translation incurs a great deal of overhead and is unacceptable to perform for each access so the results of a
translation are cached in a translation look-aside buffer (TLB). Caching of a virtual/physical address pair allows the high
speed TLB hardware to perform the translation the next time the page is referenced, eliminating the address
translation overhead. An example of the address translation process is shown in figure 4-8.

Figure 4-8. Address Translation

313029 20 19 1211 0
L] L] T T T T L] L] L] L] 1 L) T T L] L] ¥ L} L] T L) L] LJ T T T T
o) o o Q
|
Vel
4 KB Page
Frame
Area Table Base Register 0
Area Table Base Register 1
»| Area Table Base Regisler 2 > eaTabie
Area Table Base Register 3
Virtual Address Attributes Physical Address
Matchit! 3 =
Translation Lookaside Butfers
Processor Resident Memory Resident

86-203

1.0 4-13 PRELIMINARY INFORMATION

ADDRESS SPACES pPD70616 PROGRAMMER'S REFERENCE MANUAL

Area Table Register Pair

Associated with each of the four sections is a pair of privileged registers labelled ATBRO/ATLRO (section 00) to
ATBR3/ATLR3 (section 11). Each of area table register pairs contains the base address (physical address) of an
associated area table in memory along with length and validity information for the section. The area table registers
were described in detail in section 3 of this manual.

Area Tables

Each valid section of a virtual address space has an associated area table. Area tables contain up to 1024 entries
which correspond to the area 0 to area 1023. Each entry in an area table is called an area table entry (ATE). An area
table entry is eight bytes in size and a complete area table would occupy 8KB of memory. The limit of section (LOS)
field in the area table base register permits the section size to be reduced along with size of the corresponding area
table. Area tables exist in the memory address space and must aligned on a doubleword boundary. An area table
entry is shown figure 4-9. ’

Figure 4-9. Area Table Entry (ATE)

63 48 47 40 39 38 37 36 35 34 33 32
L] Ll L) T L] Ll L L L4 T L) L T Ll L] L L] T Ll o ¥ ¥ ¥ B T R
RFU LOA EXL |WRL | RDL lFJ D
000 O0OOOD O PTB PlV
31 ' : * * ’ ! ‘24 23 ’ ‘ * ! * = ’ l ' ’ ! ' : * ’ I * * ' ’ 2 1 0
B6-204
bit 0 \ The V (valid) bit indicates whether the ATE contents are valid.
V=0 ATE contents are undefined
V=1 ATE contents are valid

In the case where the V bit is cleared, the remainder of the ATE is undefined and
available. The following definitions only apply when the V bit is set.

bit 1 P The P (present) bit indicates whether the page table specified by the ATE currently
exists in memory.

P=0 page table not present
P=1 page table present

An Area Not Present Exception will occur if an ATE is referenced during an address
translation with the P bit cleared.

bits2:31 PTB The PTB (page table base) field contains the physical address of a word aligned page
table. Inthe pPD70616 microprocessor, the high order bits of the PTB (bits 24:31)
must be zero.

PRELIMINARY INFORMATION 4-14 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

bit 32 D The D (direction) bit specifies the growth direction of the areaydefined by this ATE.

D=0 . positive area growth direction (increasing addresses)
D=1 negative area growth direction(decreasing addresses)

bit 33 RFU Reserved for future use

bits 34:35 RDL The RDL (read execution level) field contains the execution level required for read

access.
RDL[35:34] =
0 O level 0
0 1 level 0, 1
1 0 level 0, 1,2
1 1 level0,1,2,3
bits 36:37 WRL The WRL (write execution level) field contains the execution level required for write
access.
WRL[37:36] =
0 0 level 0
0 1 level 0, 1
1 0 level0,1,2
11 level0,1,2,3
bits 38:39 EXL The EXL (execute execution level) field contains the execution level required for read
access. ’
EXL[39:38] =
0 0 level 0
0 1 level 0, 1
1 0 level 0,1, 2
1 1 level0,1,2,3

bits 40:47 LOA The LOA (limit of area) field specifies the range of valid pages for the area defined by
this ATE. If the D bit is cleared, pages in the range 0 <N < LOA are defined. lfthe D is
set, pages in the range 255 2 N = LOA are defined.

bits 48:63 RFU Reserved for future use

Page Tables

Each valid area of a virtual address space has an associated page table. Page tables contain up to 256 entries which
correspond to the page 0 to page 255 within an area. Each entry in a page table is called an page table entry (PTE).
Page tables need not be present in memory and can be swapped out to secondary storage if desired by marking the
area as not present and allowing the operating system to load the page table and restarting the address translation.
When an area is shared by multiple virtual spaces, several ATEs may contain references to the same PTE.

An page table entry is four bytes in size and a complete page table occupies 1KB of memory. The limit of area (LOA)
field in the area table entry permits the area size to be reduced along with size of the corresponding page tab_le. Page
tables exist in the memory address space and must aligned on a word boundary. An page table entry is shown
figure 4-10.

1.0 4-15 PRELIMINARY INFORMATION

ADDRESS SPACES puPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 4-10. Page Table Entry (PTE)

31‘ ; : ; . : .24 23l . ’ I1.'211 10 9 8 7 [} . 3 2 1 0
0 60O0O0OOD0O RPV EIW|/R|{M|AIUJRFUlLIP| 1]V
bit 0 A The V (valid) bit indicates whether the PTE contents are valid.
V=0 PTE contents are undefined
V=1 PTE contents are valid

In the case where the V bit is cleared, the remainder of the PTE is undefined and
available. The following definitions only apply when the V bit is set. If an address
translation using an invalid PTE is attempted, an Invalid Page exception will occur.

bit 1 | The 1 (11O mapped) bit determines if the page specified by this PTE is mapped into the
memory or /0 address space. '

I=0 page is not /O mapped

1=1 page is I/O mapped

bit 2 P The P (present) bit indicates whether or not the page specified by this PTE is in
memory. A Page Not Present Exception will occur if an address translation is
attempted using a PTE with the P bit cleared.

P=0 page not present
P=1 page present

If the | bit is set in this PTE, the P bit is undefined and disregarded.

bit 3 L The L (lock) bit is used to specify when the page is involved in an I/O operation such
as a DMA transfer. All CPU accesses to a page marked as locked are prohibited and
an Invalid Page Exception will occur if an address translation is attempted using a PTE
with the L bit set.

L=0" page is not locked for I/O
L=1 page is locked for /O

This field is undefined if the page is I/O mapped (I = 1).
bits 4:5 RFU Reserved for future use

bit 6 u The U (user) field is user definable by the operating system and is ignored during
address translation.

PRELIMINARY INFORMATION 4-16 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESS SPACES

bit 7 A The A (accessed) bit indicates whether the page associated with this PTE has been
referenced.

A=0 not accessed
A=1 accessed

This field is undefined if the page is /O mapped (I = 1).

bit 8 M The M (modified) bit indicates whether a Write access has occurred to the page
associated with this PTE.

M=0 no Write accesses occurred
M=1 Write access occurred

This field is undefined if the page is I/C mapped (I = 1).

bit 9 R The R (readable) bit determines if a Read access can be made to the page associated
with this PTE.

R=0 no Read access
R=1 Read access permitted

bit 10 w The W (writable) bit determines if a Write access can be made to the page associated
with this PTE.

W=0 no Write access
W=1 Write access permitted

bit 11 E The E (executable) bit determines if a Execute access can be made to the page
associated with this PTE.

E=0 no Execute access
E=1 Execute access permitted

No Execute access is permitted if the page is I/O mapped (i = 1).

bits 12:31 RPN The RPN (real page number) field has the base address (physical address) of the
page associated with this PTE. Pages are aligned on a 4KB page boundary and the
lower twelve bits of the physical address are zero. Inthe uPD70616 microprocessor,
the higher order eight bits must be zero. The RPN is a physical address in the
memory address space if the | field is cleared, otherwise it is a physical address in the
/0O address space.

1.0 4-17 PRELIMINARY INFORMATION

ADDRESS SPACES

PRELIMINARY INFORMATION

uPD70616 PROGRAMMER'S REFERENCE MANUAL

1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL TASK MANAGEMENT

Section 5
Task Management

A task is the smallest unit of concurrency in a uPD70616 system. In a modern multitasking operating system, multiple
tasks can exist simultaneously with the illusion of exclusive control of the processor and system resources. In fact, the
operating system is rapidly switching from one task to another based on the relative priorities assigned to each task. At
any given moment, one task is the highest priority task and is physically installed on the uPD70616 microprocessor. In
a multitasking system there must be a mechanism for the current task to be suspended so that a higher priority task can
use the processor.

Context Switching

Each task has a context which completely describes the state of the task. A context switch saves the current context
and loads the context of the next task. A task context consists of the following information:

the program register set

the virtual address space
information specific to the task
other task related information

The task's context is completely defined by a task control block (TCB) and any associated memory management
tables. The following is a list of the registers included in the TCB. The full uPD70616 TCB is shown in Figure 5-1.

» Program Register Set
- RO-R30
- LOSP - L3SP

« Memory Management (virtual mode only)
— ATBRO - ATBR3
— ATBLO - ATBL3

» Task Information

- TR
~ TKCW

The privileged Task Register (TR) contains the virtual address of the TCB for the current context. The task register is
read only and is updated with a new TCB address by the privileged LDTASK instruction.

1.0 5-1 PRELIMINARY INFORMATION

TASK MANAGEMENT nPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 5-1. uPD70616 Task Control Block

31 0
ATLR3
ATBR3
ATLRZ
ATBR2
ATLR1
ATBRI
ATLRO
ATBRO

R30 (FP)

I Specified by the R29 (AP)

SYCW register R28

R27

R26

Speciiied by the R25
D LDTASK/STTASK

instructions R24
R23
R22
R21
R20
R19
R18
R17
R16
R15
Ri4
R13
Ri2
R11
R10
R9
R8
R7
R6
RS

R3
R2
R1
RO

L3SP
L2SP
L1SP

LOSP
TKCW

TCB Base Address —»

85-026

Since not all applications require the use of the full task context, the uPD70616 architecture provides for the
elimination of registers from the TCB on a task by task basis. For example, tasks sharing common execution levels and
virtual address spaces are not required to maintain the shared registers in their respective task control blocks.
Applications requiring fast context switching times can also restrict the size of the general purpose register set. This
allows the application designer to trade-off the register set size against the context switch overhead and design a
system optimized with respect to some goal.

The inclusion of the area table registers and stack pointers is controlled by information programmed in the System
Control Word (SYCW). Control of the size of the general purpose register set is done by specifying a register list
operand for the context switch instructions.

An example of a reduced TCB where a single virtual address space and only execution levels 0 and 3 are implementeq
is shown in Figure 5-2. ’

PRELIMINARY INFORMATION 5-2 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 5-2. Shared Virtual Space TCB

Specified by the
SYCW register

Specified by the
D LDTASK/STTASK
Instructions

TCB Base Address —%

31

R30 (FP)

R29 (AP)

R28

R27

R26

R25

R24

R23

R22

R21

R20

R19

R18

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

R7

R6

RS

R3

R2

R1

RO

L3SP

LOSP

TKCW

TASK MANAGEMENT

85-027

The real advantage in having these options available is that it makes it possible to customize the uPD70616 context
switching to a large range of applications without imposing unnecessary limitations on context switching performance.

Instruction Set Support

The pPD70616 instruction set contains two instructions which support and simplify context switching operations. The
Store Task (STTASK) instruction saves the current task context in the TCB defined in the Task Register. The Load
Task (LDTASK) instruction sets the Task Register to a new TCB and loads the new context into the processor. These

instructions are described in detail in the instruction set section of this manual.

1.0

PRELIMINARY INFORMATION

TASK MANAGEMENT nPD70616 PROGRAMMER'S REFERENCE MANUAL

PRELIMINARY INFORMATION . 5-4 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INSTRUCTION FORMATS

Section 6
Instruction Formats
and Addressing Modes

Instruction Formats

The uPD70616 microprocessor can execute 273 variations of 119 basic instructions. Each of these 119 instructions
is encoded using one of seven instruction formats. The instruction format contains useful information on the type of
instruction as well as the number and data type of the operands. The uPD70616 instruction formats have been
carefully selected and optimized for use in a full 32-bit environment. Considerations such as minimizing the length of
frequently executed instructions, a special format for the register/register and register/memory instructions and the
use of implicit addressing modes for frequently referenced operands have been employed to reduce the code size
and maximize instruction throughput.

It is the purpose of this chapter to describe the structure and format of the binary strings which are referred to as
puPD70616 machine code. Instructions and operand addressing information are encoded as binary strings (always an
integer number of bytes in length) for the pPD70616 microprocessor to execute. In order to efficiently encode
instructions with differing numbers of operands, several different machine instruction formats are provided. The actual
format used is determined by the instruction and the operand addressing modes.

In most cases, there is the freedom to use any addressing mode within a given instruction format. However, for
reasons of efficiency, one of the two operand formats is required to use a register operand for one of its two operands.
Using a two operand instruction as a typical example, a pPD70616 instruction sequence consists of an opcode field
‘ollowed by addressing information for the first (source) operand followed by the addressing information for the
'second (destination) operand. In the case of variable length data types, a length field is also provided for the
operands.

|n| Operand 2 (read/write) vl Operand 1 (18ad) eeererersesersananens |-l

Addressing Mode Addressing Mode Opcode

F 3

Increasing Addresses

D Variable Length Data Types Only
85-001

In many current microprocessor architectures, restrictions are applied to the use of registers, restricting some registers
to hold operands and others to hold pointers or indexes. In the uPD70616 architecture, orthogonality is guaranteed
by permitting any one of the thirty-two 32-bit general purpose registers to contain a data operand, a pointer (base
register) or an index (index register) value. The orthogonal pPD70616 instruction set means that with but a few
exceptions, there is complete freedom to use any addressing mode with any operand. Source operands may be
referenced using any one of the twenty-one byte addressing modes (eighteen bit addressing modes) while
destination operands, for obvious reasons, are restricted from using the immediate addressing modes.

The remainder of this section is devoted to describing the instruction formats and addressing modes used by the
puPD70616 microprocessor. Condensed versions of this information is also summarized in Appendix B and
Appendix C.

1.0 6-1 PRELIMINARY INFORMATION

INSTRUCTION FORMATS nPD70616 PROGRAMMER'S REFERENCE MANUAL

Instruction Format |

Instruction Format | is an optimized format used for two operand instructions in the register/register and
register/memory operand classes. The minimum instruction length of this instruction format is three bytes, but it may
be extended to greater length, depending upon the addressing mode field of the second operand.

15 14 13 12 8 7 0
mod 0fm|d reg op Format |
85-029
bits 0:7 op The opcode field specifies the instruction to be executed.
bits 8:12 reg This field identifies the register to be used as the source or destination operand for this
instruction.
bit 13 d The direction bit specifies whether the register field is treated as the source or destination

operand as follows:
d=0 reg field identifies the source operand

d=1 reg field identifies the destination operand
bit 14 m This field is used in determining the addressing mode of the second operand.
bit 15 0 This field is cleared in all Format | instructions.
mod This field specifies the addressing mode for the second operand. This field ranges in

length from 1 to 9 bytes depending on the specified addressing mode.

The hexidecimal representation used for the opcode field of Format | instructions is

op
where op is the eight bit wide opcode field. An example of this format is the integer addition instruction which is
represented as

Instruction Opcode
add.b 80

PRELIMINARY INFORMATION 6-2 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL INSTRUCTION FORMATS

Instruction Format Il

Instruction Format Il is a more general form of Format | and can be used for two operand instructions using any
addressing modes or when the opcode field must be extended as in the floating point arithmetic instructions. The
minimum instruction length of a Format Il instruction is four bytes, but may be extended to greater length, depending
upon the addressing modes of the operands.

15 14 13 12' : . r8 7‘ — : . . II0
mod’ mod t|mjm subop op Format Ii
85-030

bits 0:7 op The opcode field specifies the instruction to be executed.
bits 8:12 subop This field specifies additional opcode information for extended opcode instructions.
bit 13 m' This field is used in determining the addressing mode of the second operand.
bit 14 m This field is used in determining the addressing mode of the first operand.
bit 15 1 This field is set in all Format Il instructions.

mod This field specifies the addressing mode for the first operand. This field ranges in length

from 1 to 9 bytes depending on the specified addressing mode.
mod' This field specifies the addressing mode for the second operand. This field ranges in

length from 1 to 9 bytes depending on the specified addressing mode.

The hexidecimal representation used for the opcode field of Format Il instructions is

op Format I/l instructions
opesubop Format Il instructions

where op is the eight bit wide opcode field and subop is the five bit wide opcode extension field. A typical example of
this format is the floating point addition instruction.

Instruction Opcode
addf.s 5C-18

Unless otherwise specified, the subop field of a Format /Il instruction is zero.

1.0 6-3 PRELIMINARY INFORMATION

INSTRUCTION FORMATS

Instruction Format Il

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Instruction Format Hli is used for instructions accepting a single operand. The minimum length of this instruction format
is two bytes, but it may be extended to greater length, depending upon the selected addressing mode of the

operand.
7
mod op Format Il
85-031
bit O m This field is used in determining the addressing mode of the operand.
bits 1.7 op The opcode field specifies the instruction to be executed.

mod This field specifies the addressing mode for the specified operand. This field ranges in

length from 1 to 9 bytes depending on the specified addressing mode.

An example of the hexidecimal representation used for the opcode field of Format Il instructions is

Instruction Opcode
pop E6/7

where the value of the second digit of the opcode field is determined by the addressing mode.

PRELIMINARY INFORMATION

1.0

puPD70616 PROGRAMMER'S REFERENCE MANUAL INSTRUCTION FORMATS

Instruction Format IV

Instruction Format IV is used for instructions which use the PC relative addressing mode. The instruction length of this
format is two or three bytes, depending on the size of the displacement field.

15' L] L] L] L] L) T 8 7 L] L] L] L) T L] L] g

disp8 op
Format IV

23! L] L] LS T T ¥ T L] L) L] L) L) L] L] 8 7l L T T T L] L] o

disp16 op
85-032
bits 0.7 op The opcode field specifies the instruction to be executed.
bits 8:15(23) disp This field contains the 8/16-bit displacement which is sign extended to 32 bit length and

added to the contents of the PC to compute the next PC.

The hexidecimal representation used for the opcode field of Format IV instructions is
op

where op is the eight bit wide opcode field. An example of this format is the branch to subroutine instruction which is
represented as

Instruction Opcode
bsr 48

1.0 6--5 PRELIMINARY INFORMATION

INSTRUCTION FORMATS uPD70616 PROGRAMMER'S REFERENCE MANUAL

Instruction Format V

Instruction Format V is used for instructions which take no operands. The instruction length of these instructions is
one byte.

op Format V

85-033

bits 0:7 op The opcode field specifies the instruction to be executed.

The hexidecimal representation used for the opcode field of Format V instructions is

op
where op is the eight bit wide opcode field. An example of this format is the NOP instruction which is represented as
Instruction Opcode
nop CD

PRELIMINARY INFORMATION 6-6 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

" Instruction Format VI

INSTRUCTION FORMATS

Instruction Format VI is used for the loop instructions and contains both control register and displacement fields. The
length of instruction format VI instructions is four bytes.

16 15 13 12
T L T

disp16

T

subop

T

reg

op Format Vi

85-034

bits 0:7 op
bits 8:12 reg
bit 13:15 subop
bits 16:31 disp16

The hexidecimal representation used for the opcode field of Format V! instructions is

op*subop

The opcode field specifies the instruction to be executed.
This field identifies the register to be used as the control register.
This tield contains additional instruction identification information.

This field contains the 16-bit displacement which is sign extended to 32 bit length and
used as an offset from the current contents of the PC.

where op is the eight bit wide opcode field and subop is a three bit wide opcode extension field. An example of this
format is the decrement and branch if not zero instruction.

Instruction Qpcode
dbnz CT7e2

1.0

6-7

PRELIMINARY INFORMATION

INSTRUCTION FORMATS nPD70616 PROGRAMMER'S REFERENCE MANUAL

Instruction Format VI

Instruction Format VI is used for instructions manipulating variable length data types such as character strings and bit
strings as well as the decimal arithmetic instructions. Format VIl instructions are subdivided into three subtypes
depending the number and location of the variable length operands.

Format Vlla Used with instructions that reference two variable length operands.
Format Vilb Used when the source operand is a variable length data type and the destination operand is a fixed
length data type.

Format Vilc Used when the source operand is a fixed length data type and the destination operand is a variable
length data type or with decimal arithmetic instructions.

Format VIl instructions contain an 8-bit extension field which is used to determine the length of a variable length
character or bit string operand. The most significant bit of the extension field is used to determine whether the direct
mode (the operand length is in the lower seven bits of the extension field) or the indirect mode (the operand length is
contained in the general purpose register identified by the lower seven bits of the extension field) is specified. This
field is also used to store the mask pattern for the ADDDC, SUBDC, SUBRDC, and CVTD instructions.

7 0
i 1 I T 1 ¥
r length
86-096
bit 7 r The r (register) bit determines whether the length field contains the operand length

(direct mode) or contains a pointer to a general purpose register containing the operand
length. This field is decoded as follows:
r=0 Direct mode, length field contains the operand length.
r=1 Indirect mode, length field contains the number of a general purpose
register (0-31) that contains the operand length.

bits 6:0 length The length operand (0-127) or the register ID (0-31) resides in this field, as determined
by the r field.

All Format Vil instructions use a 12-bit instruction field. The hexidecimal representation used for the opcode field of
Format VIl instructions is

opesubop
where op is the eight bit wide opcode field and subop is the five bit wide opcode extension field. A typical example of
this format is the AND bit string (upward) instruction.

Instruction Opcode
andbsu 5Be*10

PRELIMINARY INFORMATION 6-8 1.0

pnPD70616 PROGRAMMER'S REFERENCE MANUAL INSTRUCTION FORMATS

Format Viia
.............. UL AEN" N N AN
len' mod’ len mod 1im[m1 subop op] Format Vila
85-035
bits 0:7 op The opcode field specifies the instruction to be executed.
bits 8:12 subop This field specifies additional opcode information for the instruction.
bit 13 m' This field is used in determining the addressing mode of the second operand.
bit 14 m This field is used in determining the addressing mode of the first operand.
bit 15 1 This field is set in all Format Vlla instructions.
mod This field specifies the addressing mode for the first operand. This field ranges in length
from 1 to 9 bytes depending on the specified addressing mode.
len First operand length field.
mod' This field specifies the addressing mode for the second operand. This field ranges in
length from 1 to 9 bytes depending on the specified addressing mode.
len’ Second operand length field.

1.0

6-9 PRELIMINARY INFORMATION

INSTRUCTION FORMATS uPD70616 PROGRAMMER'S REFERENCE MANUAL

Format Vlib
- 15141312" "87' — ."O
mod’ len mod 1imjm’ subop op Format VIib
85-036

bits 0:7 op The opcode field specifies the instruction to be executed.
bits 8:12 subop This field specifies additional opcode information for the instruction.
bit 13 m' This field is used to determine the addressing mode of the second operand.
bit 14 m This field is used to determine the addressing mode of the first operand.
bit 15 1 This field is set in all Format Vllb instructions.

mod This field specifies the addressing mode for the first operand. This field ranges in length

from 1 to 9 bytes depending on the specified addressing mode.
len Variable length operand length field.
mod' This field specifies the byte addressing mode for the second operand. This field ranges
in length from 1 to 9 bytes depending on the specified addressing mode.
Format Vilc
""""" 15141312‘ — '8 7' — et .O
ext mod' mod 1 |mim’ subop ’ op Format Vlic
85-003

bits 0:7 op The opcode field specifies the instruction to be executed.
bits 8:12 subop This field specifies additional opcode information for the instruction.
bit 13 m' This field is used in determining the addressing mode of the second operand.
bit 14 m This field is used in determining the addressing mode of the first operand.
bit 15 1 This field is set in all Format Vlic instructions.

mod This field specifies the addressing mode for the first operand. This field ranges in length

from 1 to 9 bytes depending on the specified addressing mode.

This field specifies the addressing mode for the second operand. This field ranges in
length from 1 to 9 bytes depending on the specified addressing mode.

ext’ Operand extension field containing either a length operand or a mask pattern (decimad
arithmetic instructions).

PRELIMINARY INFORMATION 6-10 1.0

pnPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

Addressing Modes

The pPD70616 microprocessor provides fourteen basic addressing modes for referencing byte aligned data. These
basic addressing modes include:

Register Register Indirect
Autoincrement Autodecrement
Displacement PC Displacement

Displacement Indirect
Double Displacement
Direct Address
Immediate

PC Displacement indirect
PC Double Displacement
Direct Address Deferred
Immediate Quick

Registers are often used to hold an index to select a particular member of an array. Unfortunately, an index is the same
as an offset only when the members of an array occupy exactly one byte. The uPD70616 architecture offers a number
of scaled index addressing modes to help ease this problem with the management of indexes. With seven of the
basic addressing modes, it is possible to specify an additional index register. The contents of an index register is
multiplied by the size of the operand (in bytes) and added to the base address. Thus, any of these seven addressing
modes can be used to specify the base address of an array, and then use the index register (which can be any of the
32 general purpose registers) to index into the array.

The value used to scale a register in the autoincrement, autodecrement and scaled index addressing modes depends
on the data type of the operand. The following table summarizes this information:

Scaling Constant

Data Type Increment/Decrement Scaled Index

Byte

Halfword

Word

Doubleword

Short Real

Long Real

Packed Decimal
Unpacked Decimal
Byte Character
Halftword Character
Bit

Bit Field

Bit String

AN =N = 0HhO0OOWN-—=

- A AN =D —=0p,»©HAN=

— Not Available 86-020

The uPD70616 also supports eighteen bit addressing modes for addressing bit-aligned data types such as fpii fields
and bit strings. Bit addressing modes enable the programmer to specify a byte base address and a 32-bit bit ¢ifs 1 in a
single operand.

The notations for these twenty-one byte addressing modes and the eighteen bit addressing modes are summi: rized
in the following table. '

1.0 6—11 PRELIMINARY INFORMATION

ADDRESSING MODES

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Addressing Mode
Byte Addressing Bit Addressing
Register Rn -
Register Indirect [Rn] @[Rn]
Register Indirect Indexed [Rn])(Rx) Rx@[Rn)
Autoincrement [Rn+] @[Rn+]
Autodecrement [-Rn]) @[-Rn]
Displacement disp[Rn] offset@[Rn]
PC Displacement disp[PC] offset@[PC]
Displacement Indexed disp[Rn]J(Rx) Rx@disp[Rn]
PC Displacement Indexed disp[PC)(Rx) Rx@disp[PC]
Displacement Indirect [disp[Rn]] @[disp[Rn]}
PC Displacement Indirect [disp[PC]] @[disp[PC]]
Displacement Indirect Indexed [disp[Rn]})(Rx) Rx@[disp[Rn]}
PC Displacement Indirect Indexed [disp[PC])(Rx) Rx@[disp[PC]]
Double Displacement disp1 [disp2[Rn]] offset@[disp [Rn]}
PC Double Displacement disp1 [disp2 [PC]] offset@| disp [PC 1]
Direct Address /addr @/addr
Direct Address Indexed /addr (Rx) Rx@/addr
Direct Address Deferred [/addr] @[/addr])
Direct Address Deferred Indexed [/addr)(Rx) Rx@[/addr]
Immediate #value -
Immediate Quick #value (1-15) -

— Not Available

Calculation of Bit Addresses

86-097

A virtual address for byte aligned data consists of 32 bits. Since the identification of a particular bit within a byte
requires an additional three bits, a total of 35 bits is needed to address an arbitrary bit in virtual memory. This means
that the address of a bit cannot be expressed in a single 32-bit word. Two 32-bit words can be used to form a bit
address, and a convenient convention for this is to interpret one of the words as a byte base address and the other as
a bit offset from the base address. To form the necessary 35-bit bit address, the byte base address is zero extended
on the right to form a 35-bit base address. The 32-bit bit offset is then sign extended to 35 bit length and added to the
base address. The 35-bit sum is then used to address the start of the bit data type in memory.

PRELIMINARY INFORMATION

6-12

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

T T T T T T Y T T T v T T T T T T T T T T T T T T T \J T T T T

Base Address 0lo0]0

Y T Y T Y T Y Y \J T T T L} T T T T T v T ¥ i T 7

Sign Extended Bit Offset

i 1 I L 1 s I A 1 1 Il i 1 i I I i L n 1 I n '

Sign Extension

T Y T

Bit Address

i A 1 I 1 i n I i I 1 I A 1 I L

Eighteen of the byte addressing modes (the exceptions are register and the two immediate addressing modes)
discussed in the preceding section require two 32-bit values (often one of the values is implicitly 0) to be added in
order to obtain the address of the operand. The uPD70616 re-interprets these addressing modes as suggested by
‘he above diagram for instructions which operate on bit fields and bit strings. The bit addressing modes can be
wlassified into bit displacement and bit index modes.

The bit displacement modes are re-interpretations of the byte displacement addressing modes. The displacement
field is interpreted as the bit offset from the base address. In the case of instructions with no displacement field, an
offset of 0 is substituted. The other exception is the double displacement addressing mode which uses one
displacement field to locate a memory based pointer and the second displacement field as the bit offset.

The bit index modes are re-interpretations of the scaled index addressing modes. When used where a bit address is
required, the index register Rx is interpreted as a bit displacement and any base register and displacement fields form
the byte base address. Notice that this addressing mode is not inconsistent with its other uses, since the index
register is scaled to the size of the data, which in this case is a single bit.

Addressing Mode Encoding

The uPD70616 addressing modes for denoting byte aligned data are described in the next section. The minimum
encoding of any of the fourteen basic addressing modes requires nine bits. It is convenient to divide these nine bits
into three fields, mod, Rn and m.

The m and mod fields together define the addressing mode. The five bit Rn field is used to specify a register number,
or it may provide other information if the addressing mode uses no register as in the case of the PC relative and
immediate addressing modes. The scaled index extension modes all require an index register, Rx, in addition to the
base register, Rn. Five bits are needed to specify the register itself, and three extra bits beyond that are used to
indicate the fact that the scaled index addressing mode is being used. The placement of these additional eight bits is
shown in the diagram below.

1.0 6-13 PRELIMINARY INFORMATION

ADDRESSING MODES uPD70616 PROGRAMMER'S REFERENCE MANUAL

- mod & m Addressing Mode
7 63 55 47 39 31 23 15 7 0

011« Rne| 1 Rn

001« Rne; O [Rn

100« Rne{ 1 [Rn+

1014 Rne 1 [-Rn

1110«vali» 0 immed.4

l@— disp 000« RN © disp.8[Rn

[¢— disp 11110000 0 disp. B{PC

j@— disp 100« Rn¥> 0 disp.8[Rn

le— disp 11111000 | O disp.8[PC
0114Rn»110« Rx» 1 [Rn](Rx)
[+ val 11110100 | © immed.8

[————disp —————»1 0014 Rn» 0 disp.16[Rn

- disp #1 11110001 | © disp.16[PC]

[¢————disp —————> 1014 RN¥ 0 disp.16[Rn]

[¢———disp———"1 11111001 | © disp.16[PC]

[——— va| ———#1 11110100 | 0 ’ immed.16
le— dispt —»}e—disp2 — 000€ Rn > 1 disp1.8] disp2.8{Rn}]
4— disp1 —>{e-disp2 —» 11111100| 0 disp1.8{ disp2.8[Rn]]
je— disp —»{ 000« Rn»| 1104 Rx» 1 disp.8[Rn}(Rx)
fa— disp —»{ 11110000 | 110 Rx#{ 1 disp.8[PC](Rx)
fe— disp —»{ 1004 Rn & 1104 Rx» 1 { disp.8[Rn]}(Rx)
fa— disp ~»{ 11111000 | 1104 Rx# 1 [disp.8[PC]}(Rx)
[¢———disp———>{ 0014-Rn-»{ 1104 Rx»| 1 disp. 15[nn](nx)

[digp——»{ 11110001 |110@ Rx+»{ 1 disp.16[PC)(Rx)
e (fi§p ~————1 100 RN 110@ Rx-»| 1 [disp.16[Rn (Rx)
[disp—»| 11111000 |110¢Rx¥»| 1 [disp.16[PC}}(Rx)
disp »| 0104 Rn# 0 disp.32[Rn]

-+ disp 111100101 0 disp.32[PC

e disp » 110¢Rn# 0 [dlsp 32[Rn]
< disp » 11111010 | © [disp.32[PC}]

disp1 :i‘ disp2 0014 RN 1 disp1.16[disp2.16[Rn}}
disp1 -1 disp2 11111101 0 disp1.16[disp2.16{PC]}
< addr #1 11110011 | O laddr
< addr 11111011 0 [faddr)
val #{ 11110100 | © immed.32
< disp 1 010 «Rn] 110€¢ Rx# 1 disp.32[Rn]{Rx)
- disp 11110010 | 110« Rx»{ 1 disp.32[PC](Rx)
- disp 1104Rn» 1104 Rx» 1 [disp.32[Rn]}(Rx)
< disp 11111010 | 110« Rx»{ 1 [disp.32[PC]}}(Rx)
<+ addr # 11110011 | 110€¢ Rx» 1 /addr(Rx)
<+ addr # 11111011 | 110« Rx» 1 [/addr])(Rx)
< disp1 >l disp2 j 10«4 Rne| 1 disp1.32[disp2.32[Rn]]
< disp1 e disp2 > 11111110 O disp1.32[disp2.32[PC]]
86-041

PRELIMINARY INFORMATION 6-14 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

The remainder of this section describes in detail the uPD70616 addressing modes. A sample of the format used to
describe each of the addressing modes is shown below.

Addressing Mode Format

Format This field describes the assembly language format for the byte (bit) addressing modes.

Description
A description of the byte (bit) addressing mode appears in this area.

mod Field Encoding

The format of the mod field is contained in this section. Individual fields can be identified using the
following keys:

212 T Register n
RX.oriiiiiiiiiee e Index register x
disp..ciiiiiiiiii, Displacement
val..o, Immediate value
addr......cocoeeiieiinn, 32-bit address

Notes Any additional information relevant to the addressing mode is supplied in this section.

1.0 6-15 PRELIMINARY INFORMATION

ADDRESSING MODES nPD70616 PROGRAMMER'S REFERENCE MANUAL

Register | Rn

Format Rn....ccueeeee. Byte Addressing

Description

Byte The operand is found in the specified register (or pair of consecutive registers). This addressing mode allows
the contents of any of the 32 general purpose registers to be used as the operand in an instruction. For byte
or haltword data, the low order portion of the register is used (bits 7:0 or 15:0). For doubleword (64-bit) data,
the operand resides in the registers Rn and Rn+1, with the least significant word located in register Rn. The
use of R31 for doubleword data is unpredictable.

Instruction Rn

o (—“////////A

Bit Prohibited

mod Field Encoding

4+——mod— m

7 0
Rn 011<«—Rn—» 1

Notes The use of this addressing mode with a variable length data type will generate an lllegal Addressing Mode
exception.

PRELIMINARY INFORMATION 6-16 : 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

Register Indirect | [Rn]
Format [Rn]............ Byte Addressing @I[Rn]..............Bit Addressing
Description

Byte This addressing mode allows the contents of any general purpose register to be used as a pointer to an
operand located in memory.

Instruction Rn Memory
U : OH

Bit The base address of the operand in Rn is combined with a default bit offset of 0 to generate the bit address of
the operand.

Instruction Rn
Q r_‘ & ~

offset = 0

Memory

mod Field Encoding

4——mod—— m

7 0
[Rn] 011e—Rn—s 0

1.0 - 6-17 PRELIMINARY INFORMATION

ADDRESSING MODES nPD70616 PROGRAMMER'S REFERENCE MANUAL

Register Indirect Indexed [Rn](Rx)
Format [Rn)(Rx)......Byte Addressing Rx@[Rn].......... Bit Addressing
Description
Byte

This addressing mode is similar to the register indirect mode. The contents of a general purpose register is
used as a pointer to a word location which is scaled by the contents of the specified index register.

Instruction Rn

O — O

Memory

Rx * size

Bit The index register Rx is is used as the bit offset from the byte base address contained in Rn.
Instruction Rn
TITIrTrTrT TTAWATT TrrrrTry Memory
Rx. i

mod Field Encoding

- mod » m

15 7 0

[Rn}(Rx) 011 «—Rn— 110 <« Rx— 1
PRELIMINARY INFORMATION 6-18

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

ADDRESSING MODES

Autoincrement [Rn+]

Format [Rn+].......... Byte Addressing @[Rn+]

............ Bit Addressing

Description

Byte

This mode is similar to the register indirect mode, except that the contents of the register is incremented, after

the access is made, by the size (in bytes) in the operand. Any of the 32 general purpose registers may be
used for this addressing mode.

Instruction Rn

O — o]

Memory

Bit The contents of register Rn and a bit offset of 0 are used to compute the bit address of the operand. The
contents of Rn are then incremented by 1 for the bit string data type or by 4 for the bit field data type.
Instruction Rn
t— =)
size——-t
v
Memory
: offset = 0
mod Field Encoding

<+—mod———>» m

7 0
[Rn+] 10 0«—Rn— 1

Notes The use of the autoincrement addressing mode in combination with certain other addressing modes may lead

1.0

to unpredictable results. In particular, if the first operand of an instruction uses the autoincrement mode, the
second operand should not use the same register for an index register. Moreover, two operands of an
instruction should both not use the same register in the autoincrement (or autodecrement) mode. For further
information, see the description of the addressing mode restrictions at the end of this section.

6-19 PRELIMINARY INFORMATION

ADDRESSING MODES pPD70616 PROGRAMMER'S REFERENCE MANUAL

Autodecrement [-Rn]
Format [-Rn].......... Byte Addressing @[-Rn]............ Bit Addressing
Description

Byte This addressing mode is similar to the register indirect mode, except that the contents of the register is
decremented, before the operand access is made, by the size (in bytes) of the operand. Any of the 32
general purpose registers may be used with this addressing mode.

Instruction Rn Memory

‘_‘é g,

Bit The contents of base register Rn is first decremented (count determined by the data type) and the result is
added to a bit offset of 0 to generate the operand bit address.

.

O

Instruction Rn

Uﬁé

O ~

A

g

offset =0

mod Field Encoding

+——mod——» m

7 0
[FRn] 1 01<«—Rn—» 1

Notes The use of the autodecrement addressing mode in combination with certain other addressing modes may
lead to unpredictable results. In particular, if the first operand of an instruction uses the autodecrement mode,
the second operand should not use the same register for an index register. Moreover, two operands of an
instruction should both not use the same register in the autodecrement (or autoincrement) mode. For further
information, see the description of the addressing mode restrictions at the end of this section.

PRELIMINARY INFORMATION 6-20 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

ADDRESSING MODES
Displacement disp[Rn]
Format disp[Rn].....Byte Addressing offset@[Rn]......Bit Addressing
Description |
Byte

The 8-, 16-, or 32-bit displacement is sign extended (if 8- or 16-bits) to 32-bit length and added to the
contents of the specified register. The resulting value is then used as the address of the operand.

Instruction Rn

o s O

Memory

disp

Bit The 8-, 16-, or 32-bit bit offset is combined with the contents of base register Rn to generate the bit address.
Instruction Rn
t— .)
T TvrrrTrrTrrT TTANKTTY TerryTry Memory
e offset |
mod Field Encoding
- mod > m
39 23 15 7 0
disp8[Rn] <+—disp8—» 000 «—Rn— O
disp16[Rn} <+———displ6———» 001 «—Rn—> O

disp32[Rn} «————disp32 —--o-———-» 010 «Rn— O

1.0 6-21 PRELIMINARY INFORMATION

ADDRESSING MODES uPD70616 PROGRAMMER'S REFERENCE MANUAL

Displacement Indexed disp[Rn](Rx)
Format disp[Rn](Rx).....Byte Addressing Rx@disp[Rn]....Bit Addressing
Description

Byte The operand located at the sum of the base register Rn, the displacement field and the scaled contents of
index register Rx is addressed.

Instruction Rn

Memory
o — of——
disp/
Rx * size

Bit The base address of the operand is formed by the sum of the base register Rn and the displacement field.
This value is combined with the bit offset in register Rx to form the operand bit address.

Instruction Rn

O — o N

a
TTTTTTTTTARTT \ X

Memory
fe——Rx b fe _disp |
mod Field Encoding

- mod > m

47 31 23 15 7 0
disp8[Rn](Rx) <+—disp8—» 000 «-Rn— 110 «Rx— 1
disp16[Rn](Rx) <+—displ16—» 001 «Rn—+» 110 «Rx— 1
disp32[Rn](Rx) = disp32 » 010 «—-Rn—+» 110 «Rx— 1

PRELIMINARY INFORMATION 6-22 ' 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

disp[PC]

PC Displacement

Format disp[PC].....Byte Addressing : offset@[PC].....Bit Addressing

Description
This addressing mode permits the program counter to be used in the place of one of the 32 general purpose

Byte
registers in the displacement mode. The use of the PC displacement addressing mode generates position
“independent code, since the displacement from the PC is the same without regard to the actual value of the

PC.

Instruction PC Memory

l O

The contents of the PC is used as the base address and is combined with the offset field to generate the bit

Bit
address of the operand.
Instruction PC
Q (—’ O \
TrLTTreT ll\\‘\ll lllll‘
Memory
e offset— i
mod Field Encoding
- mod > m
39 23 15 7 0
disp8[PC] <+—dispg—+11110000 O
disp16[PC} +——dispt6—»1 1110001 0
0

disp32[PC] +——————disp32————»11110010

1.0 6-23 PRELIMINARY INFORMATION

ADDRESSING MODES pPD70616 PROGRAMMER'S REFERENCE MANUAL

PC Displacement Indexed disp[PC](Rx)
Format disp[PC](Rx).....Byte Addressing Rx@disp[PC]... Bit Addressing
Description

Byte The sum of the PC, the displacment field and the scaled contents of index register Rx is used as the address
of the operand.

Instruction PC Memory
Q O -
— J s
disp

.

* '/

Rx * size |

N

Bit The sum of the PC and displacement field is used as the base address and is combined with the bit offset in
register Rx to form the operand bit address.

Instruction PC

Q r—’ © D

rrrrrry TTUNKTT AR Memory
fe—— Rx——fe——disp |
mod Field Encoding
- mod > m
47 31 23 15 7 0
disp8[PC](Rx) «—disp8—+11110000 110<«Rx— 1
disp16{PC](Rx) <+———dispil6—»1 1110001 110<«-Rx—> 1

disp32[PC)(Rx) +——————disp32-———+1 1110010 110 «Rx— 1

PRELIMINARY INFORMATION 6-24 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

Displacement Indirect [disp[Rn]]
Format [disp[Rn]].........] Byte Addressing @[disp[Rn]....... Bit Addressing
Description

Byte The word contents of the location addressed by the sum of the base register Rn and the 8-, 16-, or 32-bit sign
extended displacement field is used as the address of the operand.

Instruction Rn Memory Memory

e e

Bit The word contents of the location addressed by the sum of the base register Rn and the 8-, 16-, or 32-bit sign
extended displacement field is used as the bit address of the bit operand. No bit offset is specified in this
addressing mode.

Instruction Rn Memory

- _
— T

offset =0

mod Field Encoding
- mod s> m
39 23 15 7 0
{disp8[Rn]] <+—disp8—» 100 «Rn— 0
[disp16[Rn]] +—disp16———» 101 «—Rn— O

[disp32[Rn]] «——————disp32—————— 110 «-Rn— 0

1.0 6-25 PRELIMINARY INFORMATION

ADDRESSING MODES pPD70616 PROGRAMMER'S REFERENCE MANUAL

Displacement Indirect Indexed

[disp[Rn]](Rx)

Format [disp[Rn]](Rx)......... Byte Addressing Rx@[disp[RN]].-..cuevvernes Bit Addressing

Description

Byte The word contents of the memory location addressed by the sum of the base register Rn and the

displacement field is added to the scaled contents of index register Rx and used as the address of the
operand.

Instruction Rn

Memory Memory

Q (—‘ 0/ _f

disp

Rx * size

Bit The word contents of the memory location addressed by the sum of the base register Rn and the

displacement field is used as the base address component of the bit address. The base address and the bit
offset in register Rx are then combined to form the bit address.

Instruction Rn

O — O

Memory

disp

]

Memory

mod Field Encoding

oy
“

mod >

m
a7 31 23 15 7 0

[disp8[Rn]](Rx) <+—disp8—» 100<«Rn—» 110<«Rx— 1

[disp16[Rn]}(Rx) +——disp16————>» 101 «-Rn—+» 110<«Rx— 1

[disp32[Rn]}(RX) +——————disp32—————» 110 <«-Rn—> 110 <«Rx— 1

PRELIMINARY INFORMATION 6-26 1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

PC Displacement Indirect [disp[PC]]
Format [disp[PC]].........Byte Addressing @[disp[PC]]................. Bit Addressing
Description

Byte The word contents of the location addressed by the sum of the PC and the sign extended displacement field
is used as the address of the operand.

Instruction PC Memory Memory

AN O

Bit The word contents of the location addressed by the sum of the PC and the sign extended displacement field
is used as the base address component for the bit address. There is no bit offset field specified by the

addressing mode.
Instruction PC _Memory

S s

' 'Memory

offset=0

mod Field Encoding
- mod > m
g 23 15 7 0
[disp8[PC]] <+—disp8—»11111000 0
[disp16[PC]] +—displ6———11111001 0

[disp32[PC]] «————disp32——————»1 1111010 O

1.0 6-27 PRELIMINARY INFORMATION

ADDRESSING MODES uPD70616 PROGRAMMER'S REFERENCE MANUAL

PC Displacement Indirect Indexed [disp[PC]]1(Rx)
Format [disp[PC]}(RX)......... Byte Addressing Rx@[disp[PC]].............. Bit Addressing
Description

Byte The word contents of the location addressed by the sum of the PC and the sign extended displacement field
is added to the scaled contents of the specified index register Rx to form the address of the operand.

Instruction PC Memory Memory

g

disp
_ O

Rx * size

Bit The word contents of the location addressed by the sum of the PC and the sign extended displacement field

is treated as the byte component of the bit address and is combined with the bit offset in register Rx to form
the bit address of the operand.

Instruction PC Memory

O — O

disp

Memory

mod Field Encoding
- mod > m
47 a1 23 15 7 0
[disp8[PC]](Rx) <+—disp8—+11111000 110« Rx— 1
[disp16[PC]}(Rx) - disp16 »11111001 110 <«Rx—»> 1
[disp32[PC]](Rx) = disp32 #»11111010 110«Rx— 1

PRELIMINARY INFORMATION 6-28 1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL

ADDRESSING MODES
Double Displacement disp1[disp2[Rn]]
Format disp1[disp2[Rn]].....Byte Addressing offset@[disp[Rn]]......... Bit Addressing
Description .
Byte

This addressing mode is like the displacement indirect mode except that an additional displacement value is
provided to be added to the address of the operand. An 8-, 16-, or 32-bit displacement field, disp2, is sign
extended and added to the contents of a general purpose register to form an address. The word contents of
that location is then fetched and added to the first displacement field, disp1, to form the address of the

operand.
Instruction Rn Memory Memory
(e
disp2 disp1
g o] i
Bit The word contents of the memory location addressed by the sum of the base register Rn and the
displacement field is treated as the byte component of the bit address. This value is then combined with the
bit offset field to generate the bit address of the operand.
Instruction Rn Memory
U : O
disp
S/
""""" A
Memory
!
mod Field Encoding
- mod + m
71 39 23 15 7 0
disp1.8[disp2.8[Rn]] «disp1 »«-disp2-» 000 «Rn— 1
disp1.18[disp2.16[Rn]] - disp1 > disp2 »> 001 «-Rn— 1

disp1.32[disp2.32[Rn]] = disp1 > disp2

4

—» 010 «—Rn— 1

1.0 6-29 PRELIMINARY INFORMATION

ADDRESSING MODES pPD70616 PROGRAMMER'S REFERENCE MANUAL

PC Double Displacement disp1[disp2[PC]]
Format disp1[disp2[PC]].... Byte Addressing offset@[disp[PC]]......... Bit Addressing
Description

Byte This addressing mode is similar to the displacement indirect mode except that an additional displacement
value is provided to be added to the address of the operand. An 8-, 16-, or 32-bit displacement field, disp2, is
sign extended and added to the contents of PC to form an address. The word contents of that address is
then fetched and added to the first displacement field, disp1, to form the address of the operand.

Instruction PC Memory Memory

[e e

%

Bit The word contents of the memory location addressed by the sum of the PC and the sign extended
displacement field is treated as the byte component of the bit address. This value is then combined with the:
bit offset tield to generate the bit address of the operand.

Instruction PC - Memory
U :
disp
o O1T—
"""" A
Memory
}
mod Field Encoding
- mod > m
7 39 23 15 7 0
disp1.8[disp2.8[Rn]] <«disp! -+edisp2+11111100 O
disp1.16[disp2.16[Rn]] <+——disp1 > disp2 +»11111101 0
disp1.32[disp2.32[Rn]] = disp1 > disp2 +»11111110 O
PRELIMINARY INFORMATION 6-30 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

Direct Address /addr
Format faddr..........] Byte Addressing @/addr............. Bit Addressing
Description

Byte The 32-bit address of the operand is explicitly contained in the instruction.

Instruction Memory

Bit The 32-bit address in the instruction is used as the byte address component of a bit address. The bit offset in
this addressing mode is 0.

Instruction
Q ‘ \
offset =0
mod Field Encoding
- mod > m
39 23 15 7 0

/faddt 4—————addr32—————— 11110011 0

1.0 6-31 PRELIMINARY INFORMATION

ADDRESSING MODES uPD70616 PROGRAMMER'S REFERENCE MANUAL

Direct Address Indexed /addr(Rx)
Format /addr(Rx)..........] Byte Addressing Rx@/addr......... Bit Addressing
Description

Byte The sum of the operand address contained in the instruction and the scaled contents of index register Rx is
used as the operand address.

Instruction Memory

O -
Rx‘sg
\

Bit The 32-bit address in the instruction is treated as the byte component of a bit address and is combined with
the bit offset located in register Rx to form the bit address of the operand.

Instruction

Q‘ l A

a
TT T Ty TY T AT T T rrovy

Memory

¥y
oy
3

mod Field Encoding
- mod > m

47 31 23 15 7 0
/addr(Rx) ¢———————2addr32 ——————11110011 110<«Rx— 1

PRELIMINARY INFORMATION 6-32 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

Direct Address Deferred [/addr]
Format [/addr]..............] Byte Addressing @[/addr]........... B;t Addressing
Description

Byte As with the direct addressing mode, an address is specified explicitly in the instruction. The word contents of
that location is then used as the address of the operand.

Instruction Memory Memory
[>

Bit The word contents of the location addressed by the instruction is treated as the byte component of the bit
operand and is combined with a bit offset of 0 to address the operand.

Instruction Memory
® r - oF——

offset =0

”Memory

mod Field Encoding
- mod

\{
3

39 23 15 7 0
[/addty] «—————addr32———1 1111011 O

1.0 6-33 PRELIMINARY INFORMATION

ADDRESSING MODES nPD70616 PROGRAMMER'S REFERENCE MANUAL

Direct Address Deferred Indexed [/addr](Rx)
Format [/addr}(Rx).............. B;te Addressing Rx@[/addr]....... Bit Addressing
Description

Byte The sum of the word contents of the memory location addressed by the instruction and the scaled contents of
index register Rx is used as the address of the operand.

Instruction Memory

ol 1 ¢ , o —

Memory

Rx * size

Bit The word contents of the location addressed by the instruction is treated as the byte component and
combined with the bit offset located in register Rx to form the bit address of the operand.
Instruction Memory
QL____I Or——
1T R R Memory
* Rx :
mod Field Encoding
- mod - m
47 31 23 15 7 0
[/addr])(Rx) <— addr32 »11111011 110«Rx— 1

PRELIMINARY INFORMATION 6-34 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

Immediate #value

Format #value........ Byte Addressing

Description

Byte With the immediate addressing mode, the operand is contained in the instruction. This addressing mode is
useful for expressing constant values to be used as source data for instructions. The immediate addressing
mode cannot be used with doubleword data.

Instruction

Bit Prohibited

mod Field Encoding
- mod > m
30 23 15 7 0
#immed8 < immed8—+11110100 O
#immed16 +———immedi16———»1 1110100 O

#immed32 «————immed32 ———————»1 1110100 O

Notes The use of the immediate mode as the destination operand addressing mode will result in a lllegal Addressing
Mode exception.

The attempted use of the immediate addressing mode as a doubleword source operand will result in a
Reserved Addressing Mode exception.

1.0 6-35 PRELIMINARY INFORMATION

ADDRESSING MODES uPD70616 PROGRAMMER'S REFERENCE MANUAL

Immediate Quick #value
Format #value.............. Byte Addressing
Description

Byte This is a variant of the immediate addressing mode in which the immediate value is abbreviated to four bits and
zero extended to the source operand length prior to instruction execution. The immediate quick addressing
mode cannot be used with doubleword data.

Instruction

Bit Prohibited

mod Field Encoding

#immed4 111 O0wval» 0

Notes The use of the immediate quick mode as the destination operand addressing mode will result in a lllegal
Addressing Mode exception.

The attempted use of the immediate addressing mode as a doubleword source operand will result in a
Reserved Addressing Mode exception.

PRELIMINARY INFORMATION 6-36 1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL ADDRESSING MODES

Addressing Mode Restrictions

Under certain conditions, restrictions are applied to the use of certain addressing modes in two operand instructions.
Whenever the operand addressing modes are completely independent of each other, no restrictions apply to the
selection and use of the uPD70616 addressing modes. However, if the two addressing modes have a mutual
dependancy on a common base or index register, the operation may have unpredictable results.

Restrictions apply to two operand instructions when an autoincrement/autodecrement addressing mode is specified
for the first operand and the second operand is addressed using a register modified by the first operand. Should this
situation occur, the uPD70616 will calculate the effective addresses of the operands using the folowing two rules:

+ the effective address of the first operand is evaluated and any modification are made
then,
» the effective address of the second address is calculated and any modifications made.

For example, consider the following instruction.

mov.w [3+ 1, [3+] ; OK

Using the preceding guidelines, if the contents of the r3 is 0x100 prior to the execution of the instruction then the
address of the first operand is 0x100, the address of the second operand is 0x104 and the contents of r3 following
the execution of the instruction is 0x108.

However, under the following conditions, the nPD70616 cannot reliably calculate the operand address and the
festrictions below apply :
1. Autoincrement/autodecrement — scaled index

If the autoincrement/autodecrement addressing mode is specified for the first operand and the same register is
specified as the index register in a scaled index addressing mode for the second operand, the results are
unpredictable.

mov.w [3+ 3, [rd4 1(£3) ; unpredictable

2. Autoincrement/autodecrement — autoincrement/autodecrement

If the same register is specified for an autoincrement/autodecrement addressing mode for both the first and
second operands of an instruction in which the lengths of the operand data types differ, the results are
unpredictable.

movs.bw [-x20]}, [-r20] ; unpredictable
cvt.lw [r20+ 1, [r20+] ; unpredictable

1.0 6-37 - PRELIMINARY INFORMATION

ADDRESSING MODES uPD70616 PROGRAMMER'S REFERENCE MANUAL

PRELIMINARY INFORMATION 6-38 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INSTRUCTION SET

Section 7
uPD70616 Instruction Set

A major goal of the uPD70616 design was to provide a comprehensive instruction set with full support for a variety of
data types. A large variety of data transfer, arithmetic, logical, control transfer, and stack instructions are represented.
The comprehensive instruction set coupled with the flexible addressing modes permit an optimizing compiler to
extract maximum performance from the uPD70616 architecture, providing a performance increase over less
sophisticated microprocessors. Additional instructions support system activities such as memory management and
task swapping. These instructions are par of the privileged instruction set.

Instruction Set Description

Prior to introducing the instruction set descriptions, a number of commonly used definitions and an example should
prove helpful.

Mnemonic ———» MOV Move MOV
. . Syniax Inetruction Opoode
The assembler syntax for the instruction and ——— mov> wobr astow Move Byts 09
any associated operands. The operand field T Move Heltword 8
contain three components, the operand name, mov.d weds, dstdw Move Dovbleword 3F
data type and access fields. See the tables in
the text for additional information on these Operation Addrassing Modes
fields. / dst « 80 ‘Addressing Mode we dst
RAn o (]
A concise description of the instruction. Descripton)| o] o
/ mo:‘m duiqmm:byhvmooopumdbeophd wthe ::*: g g
v e . N . destination rand. n
A detailed description of the instruction with - m) ‘ - awipmrc) | o | o
additional information concerning the bhiidppioemay s iteirsesd. Mot qot e [dsoiAvpcil | o | o
operation, effects on the flags and pgtentlal saurce commd gl bokre beng Fawiered B he duy {dmp2[Repc]) | o | o
exception conditions. : mwu | o } o
P On the pPD70616 microp , 8 Resorved g liaddr] | © o
Mode exceplion will occur if the immediate or immediate [Rn) Rx) o -]
:'p:kmd g mode is specified for & source dep | AVPC K Rx) o o
' [dsp[RVPC]KRe) | © o
This field contains information on the effect of ————# conditon Codes ol I e
the instruction execution on the flags. Any oy o 8 7 wmedaoosck | a | x
flags not listed are unmodified by the Lo J-1-1-1 woeciae | & | X
instruction. CY Unchanged X Nlogal Addressing Mode 86045
OV Unchanged A Resarved Addressing Mode
3 ncnges coosins
The permissible instruction formats for this ———% suclon Forma! None
instruction. Formatl, i
A list of the permissible addressing modes for
each operand.
Symbol Definitions
O Valid addressing mode
: ; i X Mllegal addressing mode
A list of any exceptions that might occur as a |
result of the execution of this instruction. This A 5::32’“3‘;'2":53?:;’;?”’“‘;’:“
list only includes the instruction exceptions g
and does not contain any of the memory
management exceptions which can occur on 86.138
any memory access.
1.0 7-1 PRELIMINARY INFORMATION

INSTRUCTION SET

pPD70616 PROGRAMMER'S REFERENCE MANUAL

Data Type Abbreviations Operand Access Abbreviations

Symbol Data Type Symbol Access Type
b Byte (8-bit) r Read access
h Halfword (16-bit) w Wirite access
w Word (32-bit) w Read and write access
d Doubleword (64-bit) rwi Read-modify-write interlocked access
s Short Real (32-bit) ex Execute access
| Long Real (64-bit) n No access (MOVEA instruction)
p Pointer (32-bit) 135

The pPD70616 instruction set description is presented
in alphabetical order. Appendix A provides a summary of
the instruction set and also lists the instructions by
functional grouping.

PRELIMINARY INFORMATION 7-2

1.0

ABSF Absolute Value ABSF

Syntax Instruction Opcode
absf.s src.s.r, dst.s.w Absolute Value Short Real 5C+0A
absf.1 src.lr, dst.lw Absolute Value Long Real 5E-0A
Operation Addressing Modes
dst « |src| Addressing Mode src dst
Rn o} @)
Description [Rn] (o] (o]
The absolute value of the source operand is stored in : [Rn+] o o
the destination operand. Both the integer condition [-Rn] o o
codes and the floating point condition codes are disp [Rn/PC) o 0
updated to reflect the result of the operation. [disp[Rn/PC]] (o) (o]
If the source operand is a NaN or an infinity, a Reserved disp1[disp2[Rn/PC]] | O o
Floating Point Operand exception will occur and the flags ‘ /addr o o
and destination will remain unchanged. [/addr] o o
[Rn}(Rx) o o)
Condition Codes disp [Rn/PC J(Rx) 0 o)
' [disp[Rn/PC]](Rx) o} (o}
cYy OV S Z /addr(Rx) | © 0
0 0 0 * [/addr }(Rx) 0] o
Immediate.Quick A X
CY Cleared Immediate A X
OV Cleared X lllegal Addressing Mode 86-045
S Cleared . . A Reserved Addressing Mode
Set if the result is zero, otherwise cleared
FIV FZD FOV FUD FPR Exceptions
* - - * - Reserved Floating Point Operand
Floating Point Underflow
FIV Setif an invalid operation is attempted,
otherwise unchanged
FZD Unchanged
FOV Unchanged
FUD Set if the result is denormal, otherwise
unchanged
FPR Unchanged
Instruction Format
Format Il
1.0 7-3 PRELIMINARY INFORMATION

ADD

ADD

Add
Syntax Instruction Opcode
add.b src.b.r, dst.b.rw Add Byte 80
add.h src.h.r, dst.h.rw Add Halfword 82
add.w src.w.r, dst.w.rw Add Word 84
Operation Addressing Modes
dst « dst+src Addressing Mode src dst
Rn (o] (0]
Description [Rn] (o) 0
The sum of the source and destination operands is [Rn+] o o
stored in the destination operand. [-Rn] o] 0
If the immediate quick addressing mode is specified for disp[AnPC] | O o
the source operand, the immediate data is zero ~ [disp[RnPC]] | O o
extended to the source operand length before disp1[disp2[Rn/PC]] | O o
performing the operation. /addr (0] 0
[/addr) (@] 0]
Condition Codes [RnkRx) | O o
disp [Rn/PC }(Rx) o} (o}
cYy _ov S Z [disp[RPC])(Rx) | © o
* * * * faddr (Rx) 0 o)
[/addr)(Rx) (0] O
CY Setif a carry is generated, otherwise cleared Immediate.Quick (o] X
OV Setif integer overflow occurs, otherwise cleared Immediate o X
Set if the result is negative, otherwise cleared , _—
Z Setif the result is zero, otherwise cleared X lilegal Addressing Mode '
Instruction Format Exceptions
Format |, I None
PRELIMINARY INFORMATION 7-4 1.0

ADDC

Add with Carry A D D C
Syntax Instruction Opcode
addc.b src.b.r, dst.b.rw Add Byte with Carry 90
addc.h src.h.r, dst.h.rw Add Halfword with Carry 92
addc.w src.w.r, dst.w.rw Add Word with Carry 94
Operation Addressing

dst « dst+src+CY

Description

The sum of the CY flag, source, and destination
operands is stored in the destination operand.

If the immediate quick addressing mode is specified for
the source operand, the immediate data is zero
extended to the source operand length before

performing the operation.

Condition Codes
CcY (o))
* *

'CY Setif acarry is generated, otherwise cleared
OV Set if integer overflow occurs, otherwise cleared
S Set if the result is negative, otherwise cleared
Set if the result is zero, otherwise cleared

Instruction Format
Fomat |, lI

1.0

Addressing Mode

(2
=
0

disp1 [disp2 [Rn/PC]]

Rn

[Rn]

[Rn+]

[-Rn]

disp [Rn/PC]
[disp[Rn/PC1]

faddr

[/addr]

[Rn](Rx)

disp [Rn/PC J(Rx)
[disp[Rn/PC])(Rx)
/addr (Rx)

[/addr](Rx)
Immediate.Quick
Immediate

0O0000O0O0O0OO0O0O0O0O0O0OOO

Exceptions -
None

lllegal Addressing Mode

gxxoooooooooooooo &
o

PRELIMINARY INFORMATION

ADDDC

Add Decimal with Carry A D D DC
Syntax Instruction Opcode
adddc src.b.r, dst.b.rw, patb.r Add Decimal with Carry 59-00
Operation Addressing Modes
dst « dst + src + CY using mask pattern Addressing Mode src dst pat
Rn 0] 0] -
Description [Rn] (o] (o] -
The CY flag and the decimal source operand are added [Rn+] o o -
to the decimal destination operand and the result is [-Rn] o 0 -
stored in the destination operand. The decimal addition disp [Rn/PC] 0 o -
operation occurs only for the unmasked portion of the [disp[Rn/PC]] o] (o] -
operands, as determined by the mask pattern. disp1 [disp2 [Rn/PC |] (0] o -
The CY flag will be set if there is a carry out of the addition /addr o o -
operation. If the result is non-zero or a carry is [/addr] o o -
generated, the Z flag will be cleared, otherwise it remains [Rn](Rx) o o -
unchanged. : disp [Rn/PC J(Rx) 0 0 -
Following the addition operation, the result is checked to [disp[RPC])(Rx) | O o -
verify that a valid BCD representation exists in the /addr (Rx) o o -
unmasked portion of the result. If either value is not a {/addr J(Rx) o o -
valid BCD digit (0-9), a Decimal Format exception will Immediate.Quick o X -
occur and the destination will remain unchanged. Immediate o} X 0

Condition Codes
cY oV S y4
* - P *
CY Setif a carry is generated, otherwise cleared
OV Unchanged
S Unchanged
y4 Unchanged if the result is zero, otherwise
cleared
Instruction Format
Format Vilc

PRELIMINARY INFORMATION

X lllegal Addressing Mode
- Unavailable Addressing Mode

Exceptions
Decimal Format

1.0

A D D F Add Floating AD D F
Syntax Instruction Opcode
addf.s src.s.r, dst.s.rw Add Short Real 5C-18
addf.i sre.l.r, dst.l.rw Add Long Real 5E-18

Operation Addressing Modes

dst « src +dst Addressing Mode src dst
Rn (o] 6]

Description [Rn] (o] o}

The sum of the source and destination operands is [Rn+] o o

stored in the destination operand. Both the integer [-Rn] (o] 0

condition codes and the floating point condition codes disp [Rn/PC] (o] (o}

are updated to reflect the result of the operation. [disp[Rn/PC]]) 0 o]

If the absolute values of the source and destination disp1[disp2[Rn/PC]] | O o

operands are equal but differ in sign, the sign of the zero /addr o o

result will be determined by the programmed rounding [/addr] o o

mode. [Rn}(Rx) o) o)

If a source or destination operand is a NaN or an infinity, a disp[Rn/PC](Rx) | O o

Reserved Floating Point Operand exception will occur [disp [Rn/PC])(Rx) o o

and the flags and destination will remain unchanged. /addr (Rx) o o

[/addr}(Rx) | © o

Condition Codes Immediate.Quick A X

Immediate A X
cY ov S Z X lllegal Addressing Mode 86045
* 0 * * A Reserved Addressing Mode
CY Setif the result is negative and non-zero, Exceptions

otherwise cleared

OV Cleared
S Set if the mantissa sign bit of the result is set,
otherwise cleared
Z Set if the result is zero, otherwise cleared
FivV FZD FOV FUD FPR
* - * * *
FIV Setif an invalid operation is attempted,
otherwise unchanged
FZD Unchanged
FOV Set if the result is infinite, otherwise unchanged
FUD Set if the destination result is denormal,
otherwise unchanged
FPR Setif a precision error occurs, otherwise
unchanged
Instruction Format

1.0

Format Il

Reserved Floating Point Operand
Floating Point Overflow

Floating Point Underflow

Floating Point Precision

PRELIMINARY INFORMATION

AND

AND

Logical AND
Syntax Instruction Opcode
and.b src.b.r, dst.b.rw AND Byte A0
and.h src.h.r, dst.h.rw AND Haltword A2
and.w src.w.r, dst.w.rw AND Word A4
Operation Addressing Modes
dst « dstasrc Addressing Mode src dst
Rn (o) (o]
Description [Rn] o) o
The bit-wise AND of the source operand and destination [Rn+] o o
operands is stored in the destination operand. [Rn] o 0
If the immediate quick addressing mode is specified for disp[RnPC] | O o
the source operand, the immediate data is zero ~ [depl RnPC]] | O o
extended to the source operand length before disp1[disp2{ Rn/PC]] 0 0
performing the operation. faddr o] 0
[/addr] (0] O
Condition Codes [Rn)(Rx) | O o
disp [Rn/PC J(Rx) 0] (0]
cy OV S Z [disp[RVPC])Rx) | © 0
- 0 * * jaddr (Rx) | © o)
[faddr }(Rx) (o} o,
8; gPChaQQed immediate.Quick o} X
eare .
S Setif the MSB of the result is set, otherwise , Immediate | O X
cleared X Tlegal Addressing Mode 86-046
+Z Setif the result is zero, otherwise cleared
Exceptions
Instruction Format None
Format |, I
PRELIMINARY INFORMATION 7-8 1.0

ANDBS

ANDBS

AND Bit String
Syntax Instruction Opcode
andbsu bsrc.b.r, blen.b.r, bdst.b.rw AND Bit String (Upward) 5B-10
andbsd bsrc.b.r, blen.b.r, bdst.b.rw AND Bit String (Downward) 5B+11
Operation Addressing Modes
bdst « bsrc A bdst Addressing Mode bsrc | blen | bdst
Rn X (o} X
Description @[Rn] o] - (o]
The bit-wise AND of the source and destination bit @[Rn+] o - o
strings is stored in the destination bit string. Specifying @[-Rn] o - 0
the direction of the operation allows the correct result to offset@{ Rn/PC] o - o)
be computed, even when the source and destination bit @[disp[Rn/PC]] (o) - 0
strings overlap. offset@] disp [Rn/PC 1] 0 - (o]
To minimize the interrupt latency time, the ANDBS @/addr o - o
instruction allows the service of interrupts and faults @[/addr] o - o
following the completion of a bus cycle. After servicing Rx@[Rn] o - o
the interrupt or correction of the fault condition, Rx@[Rn/PC] o - o
instruction execution continues from the point of Rx@] disp [Rn/PC 1] (o) - (o]
interruption. Rx@/addr (0] - (o]
During the execution of the ANDBS instruction, registers Rx@]/addr] | ©O - o
R28 and R27 contain pointers to the bytes within the Immediate.Quick X - X
source and destination bit strings to be processed next. Immediate X o X

Following the execution of the instruction, R28 contains
the address of the byte containing the final bit of the
source bit string while R27 contains the address of the
byte containing the final bit of the destination bit string.

Condition Codes
cY oV S Z

Unchanged
Unchanged
Unchanged

cY

oV
S
Z Unchanged

Instruction Format
Format Viib

1.0

lllegal Addressing Mode
— Unavailable Addressing Mode

Exceptions
None

86-052

PRELIMINARY INFORMATION

ANDNBS

AND Complemented Bit String

ANDNBS

Syntax Instruction Opcode
andnbsu bsrc.b.r, blen.b.r, bdst.b.rw AND Complemented Bit String (Upward) 5B-12
andnbsd bsrc.b.r, blen.b.r, bdst.b.rw AND Complemented Bit String (Downward) 5B-13
Operation Addressing Modes
bdst « ~bsrc A bdst Addressing Mode bsrc | blen | bdst
Rn X o] X
Description @[Rn] (o) - 0
The bit-wise AND of the complemented source bit string @[Rn+] o - o
and the destination bit string is stored in the destination @[-Rn] o - o
bit string. Specifying the direction of the operation offset@[Rn/PC] () - 0
allows the correct result to be computed, even when the @[disp[Rn/PC1] 0 - 0
source and destination bit strings overlap. offset@] disp [Rn/PC]] (o) - 0
To minimize the interrupt latency time, the ANDNBS @/addr o - o
instruction allows the service of interrupts and faults @[/addr] o - o
following the completion of a bus cycle. After servicing Rx@[Rn] o - o
the interrupt or correction of the fault condition, Rx@[Rn/PC] (o] - 0
instruction execution continues from the point of Rx@[disp [Rn/PC]] (o] - o]
interruption. Rx@/addr (o] - 0]
During the execution of the ANDNBS instruction, Rx@([/addr] o - o
registers R28 and R27 contain pointers to the bytes Immediate.Quick X - X
within the source and destination bit strings to be Immediate X o X
processed next. Following the execution of the Megal Addressing Mode 8052
instruction, R28 contains the address of the byte — Unavailable Addressing Mode
containing the final bit of the source bit string while R27
contains the address of the byte containing the final bit Exceptions
of the destination bit string. None
Condition Codes
CcY ov S Y4
CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged
Instruction Format
Format Viib
PRELIMINARY INFORMATION 7-10 1.0

Bcc Conditional Branch Bcc

Syntax Instruction Opcode

bee disp8 Branch on Condition (byte displacement) 6x

bce disp16 Branch on Condition (halfword displacement) 7x
Operation Condition Codes

if condition then

PC « PC +sign_extended(disp) cY ov S z
else - - - -
PC « NextPC
CY Unchanged
- OV Unchanged
Description S Unchanged
The specified condition is tested and if true a branch is Z Unchanged

taken. The target address is computed by sign
extending the 8- or 16-bit displacement field to 32 bit nstruction Format
length and adding it to the PC.

Format IV
The PC relative addressing mode is implicitedly selected
by these instructions. The value of the PC used 10 mnomonic Condition Opcodes
compute the target address is the first byte of the branch BGT ((S®OV)vZ)=0 6F/7F
instruction. BGE (Se0V)=0 6D/7D
BLT (Se0V)=1 6C/7C
BLE ((S®e0V)vZ)=1 6E/7E
Mnemonic Condition BH (CYvZ)=0 67/77
Signed BGT Branch if Greater BNL CY=0 63/73
BGE Branch if Greater or Equal BL CY=i 6272
BLT Branch if Less BNH (CYvZ)=1 66/76
BLE Branch if Less or Equal BE) Z=1 64/74
Unsigned BH Branch if Higher ch 6\721 gg//;g
BNL Branch if Not Lower BNV OV =0 61/71
BL Branch if Lower BN Se=1 68/78
BNH Branch if Hot Higher BP S=0 69/79
Flags BE Branch if Equal BC CY=1 62/72
BNE Branch if Not Equal BNC CY=0 63/73
BV Branch if Overflow BZ Z=1 64/74
BNV Branch if No Overflow BNZ Z=0 65/75
BN Branch if Negative ' BR Always 6A/TA
BP Branch if Positive
BC Branch if Carry .
BNC Branch if No Carry Exceptions
BZ Branch if Zero None
BNZ Branch if Not Zero
BR Unconditional Branch

1.0 o 7-11 PRELIMINARY INFORMATION

BRK Break

BRK

Syntax Instruction
brk Breakpoint Trap

Opcode

c8

Operation
[-SP] « Exception Code
[-SP] « PSW
[-SP] « NextPC
PC « [Exception Vector 13]

Description
The breakpoint trap is asserted and program control is
transferred to the breakpoint trap exception handler.

Condition Codes
CY (o)) S Z

CY Unchanged
OV Unchanged
S Unchanged
z Unchanged

Instruction Format
Format V

Exceptions
Breakpoint Trap

PRELIMINARY INFORMATION 7-12

1.0

BRKV Break on Overflow BRKV

Syntax Instruction Opcode
brkv Break on Overflow C9
Operation

[-SP] « CurrentPC

[-SP] « Exception Code
[-SP] « PSW

[-SP] « NextPC

PC « [Exception Vector 21]

Description

The OV flag is tested and if set, an Integer Overflow
Exception occurs. Otherwise, instruction execution
continues witht the next instruction.

Condition Codes
CY oV S Y4
CY Unchanged
OV Unchanged
S Unchanged
4 Unchanged
Instruction Format
Format V
Exceptions

Integer Overflow

1.0 7-13 PRELIMINARY INFORMATION

BSR

Branch to Subroutine BSR
Syntax Instruction Opcode
bsr disp16 Branch to Subroutine
Operation

[-SP] « NextPC

PC « PC + sign_extended(disp16)

Description

The address of the next instruction is pushed onto the
stack and control is transferred to the address computed
by adding the sign extended16-bit displacment to the

PC.

The PC relative addressing mode is implicitedly selected
The value of the PC used to
compute the target address is the first byte of the branch

by this instructions.

instruction.

Condition Codes
CcY

oV

CY Unchanged
OV Unchanged
S Unchanged
z Unchanged

Instruction Format
Format IV

Exceptions
None

PRELIMINARY INFORMATION

1.0

CALL

Call Procedure

CALL

Syntax Instruction Opcode
call target.b.ex, arg.w.r Call Procedure 49
Operation Addressing Modes

tmp1 « effective_address(target) Addressing Mode target | arg
tmp2 « effective_address(arg) Rn X X
[-SP] « AP [Rn] o o
AP « tmp2 [Rn+] o o
[-SP] « NextPC [=Rn] o o

PC « tmp1 dis
p[Rn/PC] o) o]
[disp[Rn/PC]] 0] (o]
Description disp1 [disp2 [Rn/PC]] o) 0]
The CALL instruction is high level language oriented /addr (0] 0
instruction for transferring control to a subordinate [/addr] 0 0
procedure. [Rn}(Rx) o] o)
The instruction operates by first calculating the effective disp[Rn/PCJ(Rx) o o
addresses of the target procedure and argument list and [disp [Rn/PC]](Rx) o o
saving the current AP and PC registers on the stack. faddr (Rx) (o) 0
"he newly calculated values then replace the contents of [/addr)(Rx) o] 0
"he AP and PC registers. Immediate.Quick | X X
When the autoincrement, autodecrement, or scaled Immediate X X

index addressing modes are used for either the target or
argument operands, the contents of the pointer are
modified by four. Also, the result is unpredictable if the
autoincrement or autodecrement addressing mode is
specified using SP as the base register.

Condition Codes
cY (o)) S Z

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format i, Il

1.0 7-15

X lliegal Addressing Mode

Exceptions
None

86-073

PRELIMINARY INFORMATION

CAXI

Compare and Exchange Interlocked

CAXI

Syntax

Instruction Opcode
caxi Rn.w.rw, dst.w.rwi Compare and Exchange Interlocked 4C
Operation Condition Codes
lock
CcY oV S
flags « dst—Rn N " N "
it (Z=1)then
dst « R28
else CY Setif a borrow is generated, otherwise cleared
Rn « dst OV Set if integer overflow occurs, otherwise cleared
unlock S Setif the results are negative, otherwise cleared
Set if the results are zero, otherwise cleared
Description
- e . - Addressing Modes
|s.|nstruct|on is used to synchronize processes or Addressing Mode orc ot
provide mutual exclusion in a multiple processor
configuration. CAXI is a more general form of the TASI Rn| O o
instruction. [Rn] X 0
The processor informs other bus masters in the system [Rn+]f X 0
that an indivisible operation will take place by asserting - [-Rel} X 0
the bus lock output signal. The destination operand is disp[RPC]] X o |
then fetched and compared with Rn and if equal, the . [f"SP[Rn/PC]] X o
contents of R28 are stored in the destination. Otherwise disp1 [disp2[Rn/PC]]| X o
the destination contents are placed in Rn. The bus lock faddr| X o)
output is then negated, indicating that other bus masters [/addr]| X o
may again access the shared data. [Rn](Rx) X o)
If the register addressing mode is specified for the disp[RnPCI(Rx) | X o
destination, the execution of the instruction is [disp[R/PCTY(Rx)| X o
meaningless but the operation is carried out. /addr (Rx) | X o
This instruction is not allowed to use Format Il and [/addr](Rx)) X o
furthermore, the Format | direction field must be zero. Immediate.Quick | X X
Immediate X X
Instruction Format X Tllegal Addressing Mode 86-093
Format |
r Exceptions
None
PRELIMINARY INFORMATION 7-16 1.0

CHKA

Check Access Permission

CHKA

The absence of the area or page tables will cause a
memory management fault just as in a normal data
access, however, the page need not be physical present
for access rights to be checked.

When executed in the real mode, the Z flag will be set
and the CY and S flags cleared.

Condition Codes
cY (o) S Z
* - * *

CY Setif the page is /O mapped, otherwise cleared
OV Unchanged

S Set if the translation fails, otherwise cleared

p4 Set if operation is permissible, otherwise cleared

instruction Format
Formatl, Il

1.0 7-17

Exceptions
llegal Data Field

Syntax Instruction Opcode
chkar va.p.r, level.b.r Check Read Access Permission 4D
chkaw va.p.r, level.b.r Check Write Access Permission 4E
chkae va.p.r, level.b.r Check Execute Access Permission 4F
Operation Addressing Modes
check memory access permissions Addressing Mode va level
Rn @) (o}
Description [Rn] o o
A check is made if the byte data addressed by the virtual [Rn+] (e} o]
address can be accessed at the specified execution [-Rn] (o] o]
level. The Z flag will be set if the specified access is disp [Rn/PC] (o] (o)
permitted. The CY flag indicates whether the virtual [disp[Rn/PC]] (o) o)
address is mapped into the /0O address space. The S disp1 [disp2 [Rn/PC]] o) o)
flag will be set if the MMU was unable to complete the Jaddr o o)
address translation. [/addr] o) fo)
An lllegal Data Field exception will occur if the execution [Rn](Rx) 0 (o]
level operand is not in the range ' disp [Rn/PC J(Rx) o (o]
0 <level <3 [disp[Rn/PC])(Rx) | O o
.) . /addr (Rx) o] o
‘or the current execution level is less privileged than the [/addr](Rx) o o
level operand Immediate.Quick 0] o
level < PSW.EL Immediate 0 o
86-091

PRELIMINARY INFORMATION

CHLVL

CHLVL

Change Level
Syntax Instruction Opcode
chivi levelb.r, arg.b.r Change Execution Level 4B
Operation Addressing Modes
[-SP] « zero_extended(arg) Addressing Mode level arg
[-SP] « Exception Code Rn|l o o)
[-SP] « PSW (an]| © o
[-SP] « NextPC [Rn+]| © o
PC « [Exception Vector (24 + level)] [-Aan]| © o
disp[RnPC]| © o)
Description [disp[Rn/PC]]| © o)
This instruction provides a protected method of disp1 [disp2[Rn/PC]]| ©O 0
accessing more privileged execution levels. faddr{ O o -
The execution level is changed to the new level and the [/addr]|{ O o
byte argument is zero extended to word length pushed [Rn}(Rx)| ©O o
on the target execution level stack. The change disp [Rn/PC J(Rx) (0] 0
execution level exception processing then pushes the [disp[R/PC])(Rx)| O 0
exception code, PSW and PC of the next instruction on faddr(Rx)| O (0]
the stack and transfers control to the appropiate [faddr}(Rx)| ©O (o]
exception handler. Immediate.Quick | O o)
An lllegal Data Field exception will occur if the level Immediate | O o
operand is not in the range 86-092
O<level<3
h ion level is less than the level o ooPuons
or the current execution level is less than the leve lllegal Data Field
operand
level < PSW.EL
, Operands are zero extended to byte length if the
immediate quick addressing mode is specified.
Condition Codes
CcY oV S Z
CY Unchanged
OV Unchanged
S Unchanged
Unchanged
Instruction Format
Format 1, Il
PRELIMINARY INFORMATION 7-18 1.0

CLR1

Clear Bit C L R 1
Syntax Instruction Opcode
clr oftset.w.r, base.w.rw Bit Test and Clear A7
Operation Addressing Modes
CY « bit(base, offset) Addressing Mode offset base
Z « ~bit(base, offset) Rn o o
bit(base, offset) « 0 [Rn] o o
[Rn+] (o} 0]
Description [-Rn] o) o)
The bit located at the sum of the byte base address and disp [Rn/PC] O 0]
bit offset is tested and then cleared. The CY and Z flags [disp[Rn/PC 1] 0 0
reflect the state of the bit prior to the execution of the disp1 [disp2 [Rn/PC | (e} 0
instruction. /addr 0 0
The location of the designated bit is determined by the [/addr] o o
base operand. If the register addressing mode is used [Rn](Rx) o o
for the base operand, the designated bit is located within disp [Rn/PC)(Rx) (0] 0
a general purpose register at the specified bit offset. For {disp[Rn/PC]](Rx) 0 o)
any other addressing mode, the designated bit is in faddr (Rx) (o] o]
memory at the specified bit offset from the base address. [/addr](Rx) o o
rAn lllegal Data Field exception occurs if the bit offset is Immediate.Quick o X
outside the range 0 to 31. Immediate 0 X

If the autoincrement or autodecrement addressing mode
is specified for the base operand, the base operand is
treated as word data and is incremented or decremented
by four. When the immediate quick addressing mode is
specified, the immediate data‘is zero extended to word
length and used as the bit offset.

Condition Codes
cY oV S 4
* - - *

CY Setif the designated bit is 1, otherwise cleared
OV Unchanged

S Unchanged

Z Set if the designated bit is 0, otherwise cleared

Instruction Format
Format |, li

1.0 7-19

X lllegal Addressing Mode

Exceptions
llegal Data Field

86-095

PRELIMINARY INFORMATION

CLRTLB Clear TLB Entry CLRTLB
Syntax Instruction Opcode
cirtlb va.p.r Clear TLB Entry FE/F

Operation Addressing Modes

TLB Entry(va) « Invalid Addressing Mode va
Rn (o]

Description {Rn] (o]

The virtual address and the section designator (R28) are {Rn+] o

used to identify a TLB entry to be marked as invalid. The [-Rn] o

CLRTLB instruction only clears a TLB entry that has a disp [Rn/PC] (0]

matching virtual to physical address translation. [disp [Rn/PC]) (o]

It the contents of R28 are OFFFFFFFFH, the virtual disp1 [disp2[Rn/PC]] | O

address operand is translated using the current virtual /addr o

address space. Otherwise, R28 is assumed to contain [/addr] o

an area table base address and the virtual address is [Rn}(Rx) o

translated by ignoring the lower 3 bits of the area table disp [R/PC J(Rx) o

base register and performing no area table length [disp [Rn/PC] }(Rx) 0

checking. faddr (Rx) (o)

If the immediate quick addressing mode is specified for [/addr }(Rx) o

the virtual address operand, the immediate data is zero Immediate.Quick o

extended to 32-bit length and used as the virtual immediate 0

address. 8607

This instruction can be executed in either the real or
virtual address mode.

Condition Codes
cY (o)) S V4

CY Unchanged
OV Unchanged
S Unchanged
z Unchanged

Instruction Format
Format lil

PRELIMINARY INFORMATION

Exceptions
Privileged Instruction

7-20

1.0

C LRTL BA Clear All TLB Entries

CLRTLBA

Syntax Instruction Opcode
clrtiba Clear All TLB Entries 10
Operation

All TLB Entries « Invalid

Description
Each translation lookaside buffer entry is voided.

This instruction can be executed in either the real or the
virtual address mode.

Condition Codes
cY oV S Y

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged
Instruction Format

Format V
Exceptions

Privileged Instruction

1.0 7-21

PRELIMINARY INFORMATION

CMP CMP

Compare
Syntax Instruction Opcode
cmp.b srci.b.r, src2.b.r Compare Byte B8
cmp.h srci.h.r, src2.h.r Compare Halfword BA
cmp.w srcl.w.r, src2.w.r Compare Word BC
Operation Addressing Modes
src2 — srci Addressing Mode srci src2
Rn (o] o
Description [Rn] o 0
The source operands are compared by subtracting the [Rn+] o o
first source operand from the second source operand [-Rn] o o
and updating the flags in the PSW. disp [Rn/PC] o 0
If the immediate quick addressing mode is specified for ~ [dep[RnPC]] | O o
the source operand, the immediate data is zero disp1[disp2[Rn/PC]] | O o
extended to the source operand length before /addr o o
performing the operation. [/addr] (o} 0
[Rn)(Rx) (o) (o)
Condition Codes disp[Rn/PC)(Rx) | © o]
[disp{ Rn/PC])(Rx) o] o
cY (o)) S Y4 /addr (Rx) (0} O
* * * * [/addr }(Rx) o] 0
Immediate.Quick (o) O
CY Setif a borrow is generated, otherwise cleared Immediate o) o)
OV Set if integer overflow occurs, otherwise cleared s
S Setif the result is negative, otherwise cleared
Set if the result is zero, otherwise cleared
Exceptions
Instruction Format None
Format |, i
PRELIMINARY INFORMATION 7-22 1.0

CMPBF

CMPBF

Compare Bit Field
Syntax Instruction Opcode
cmpbfs bsrc.w.r, blen.b.r, src.w.r Compare Sign Extended Bit Field 5D-00
cmpbfz bsrc.w.r, blen.b.r, src.w.r Compare Zero Extended Bit Field 5D-01
cmpbfl bsrc.w.r, blen.b.r, src.w.r Compare Left Justified Bit Field 5D+02
Operation Addressing Modes
flags « src - bitfield Bit Address bsrc|blen} src Byte Address
Rn{ X | O O | Rn
Description @[Rn}] O | - O | [Rn]
The designated bit field is extracted using the specified @Rn+]| O | - § O |[Rn+]
mode and compared to the source operand. The @-Rn]l O | - f O |[-Rn]
comparison is made by subtracting the bit field data from offset@[Rn]| O | - O | disp[Rn]
the word length source operand and storing the result in offset@[PC]| O | - O | disp[PC]
the condition codes. @[disp[Rn}]l O | - O | [disp[Rn]]
if the bit field length is zero, zero will be subtracted from @[disp[PC]]| O | — § O |[disp[PC]]
the source operand. offset@[disp[Rn]]} O | — R O | disp1[disp2[Rn]]
The sum of the bit offset and the bit field length must not offset@{disp PC]]| O | ~ § O | disp1[disp2[PC]]
exceed thirty-two, otherwise an lllegal Data Field @/addr| O | - R O | /addr
exception will occur. @[/addr]} O | - O | [/addr]
If the immediate quick addressing mode is specified for z@[ﬁ"] g - g E’B"](:x) R
‘he source operand, the immediate data is zero @[Rn] - isp[Rn](Rx)
extended to the word length before performing the Rx@PC]| O | - § O | disp[PC](Rx)
comparison operation. Rx@[disp[Rn]]| O | - R O |[disp[Rn]](Rx)
Rx@[disp[PC]]| O | - § O |[disp[PC]](Rx)
o Rx@/addr| O | - O | /addr (Rx)
Condition Codes R«@[/addr]| O | - § O |[/addri(Rx)
cY ov S P4 Immediate.Quick| X | - O | Immediate.Quick
* * * * Immediate| X | O O | Immediate
X lllegal Addressing Mode 86-051

CY Setif a borrow is generated, otherwise cleared
OV Set if integer overflow occurs, otherwise cleared
Set if the result is negative, otherwise cleared
Y4 Set if the result is zero, otherwise cleared

Instruction Format
Format Vilb

1.0 7-23

- Unavailable Addressing Mode

Exceptions
lllegal Data Field

PRELIMINARY INFORMATION

CMPC

Compare Character

CMPC

Syntax Instruction Opcode
cmpce.b src.b.r, slen.b.r, dst.b.r, dlen.b.r Compare Byte Character String 5800
cmpc.h src.h.r, slen.b.r, dst.h.r, dlen.b.r Compare Halfword Character String 5A-00
Operation Condition Codes
flags « dst—src cy oV s z
-— _ * *
Description
The character string designated by the source operand CY Unchanged
is compared to the character string designated by the OV Unchanged
destination operand. The comparison continues until S Setif src> dst, otherwise cleared
the end of either character string is reached or there is a Z Setif src = dst, otherwise cleared
disagreement between the string contents. Following
‘the execution of the instruction, the S and Z flags are Instruction Format
updated to reflect the relationship between the character Fomat Vila
strings.
The S flag reflects the lexical ordering of the character Addressing Modes
strings. If the compare instruction terminates with Addressing Mode src | slen!| dst | dlen
different characters, then the S flag reflects the
unsigned comparison of the two strings. If the compare Rn X °© X °
instruction terminates by reaching the of either string, [Rn] 0 - o T
the S flag will indicate the shorter string. The Z flag will be [Rn+] | O | = [O | -
set if and only if the character strings are of identical _ [-Rn] | O - O -
length and contents. disp[RP/PC] | O | - | O | =
During the comparison operation, registers R28 and R27 _ [disp [RnPC]] | © | = | O} -
C . . dispi [disp2[Rn/PC]] | O - O -
are used to maintain the source and destination Jadd o _ o ~
addresses respectively. Following the execution of the adar
CMPC instruction, these registers contain the addresses [/addr] | O -l °© -
of the characters immediately following the the strings if [Rn](Rx) o - O -
the end of either string was reached. Otherwise, R28 disp[RPCJ(Rx) | O | - | O | -
and R27 will contain the addresses of the characters in [disp[RVPC])(Rx) | O | - | O | -
disagreement. _ /addr(Rx) | O | - | O | -
To minimize the interrupt latency time, the CMPC [faddr(Rx) | © | - | O -
instruction allows the service of interrupts and faults Immediate.Quick | X} - | X | -
following the completion of a bus cycle. After servicing _ Immediate | X | O | X | O
the interrupt or correction of the fault condition, X Slﬁg\f;iégf‘efezg'é‘%sg&?Mode seoe
instruction execution continues from the point of
interruption.
Exceptions
iliegal Data Field
PRELIMINARY INFORMATION 7-24 1.0

CMPCF

Compare Character with Filler

CMPCF

Syntax Instruction Opcode
cmpef.b src.b.r, slen.b.r, dst.b.r, dlen.b.r Compare Byte Character String with Filler 5801
cmpcf.h src.hr, slen.b.r, dst.h.r, dienb.r Compare Halfword Character String with Filler 5A-01
Operation Condition Codes
flags « dst—src cy oV 7
- -_— *
Description
The character string designated by the source operand CY Unchanged
is compared to the character string designated by the OV Unchanged
destination operand. The comparison operation S Setif src > dst, otherwise cleared
continues until a disagreement between the string Z Setif src = dst, otherwise cleared
contents is detected or both strings are exhausted. |If
the source and destination characterstrings are not of Instruction Format
equal length, the shorter string will be automatically Format Vila
extended using the fill character in R26 to the longer
string length. Following the execution of the instruction, Addressing Modes
the S and Z flags are upd.ated to reflect the relationship Addressing Mode orc | slen | dst 1 dlen
between the character strings. :
The S flag reflects the lexical ordering of the character Rn X ° X o
strings. |f the compare instruction terminates with [Rn] | O -1 9° B
different characters, then the S flag reflects the [Rn+] | O} = | O | -
unsigned comparison of the two strings. If the compare [Rn]] O | -0} -
instruction terminates by reaching the of either string, disp[Rn/PC] | O | - | O | -
the S flag will indicate the shorter string. The Z flag will be [disp[RnPC]] | O | = | O | -
set if and only if the character strings are of identical disp1 [disp2[R/PC]] | O | - | O | -
length and contents. faddr | O e O
During the comparison operation, registers R28 and R27 [/addr] | O - O -
are used to maintain the source and destination [Rn](Rx) 0 - O -
addresses respectively. Following the execution of the disp[RW/PC)(Rx) | O | - 1 O | -
CMPCF instruction, these registers contain the [disp[Rn/PC])(Rx) | O - 0 -
addresses of the characters immediately following the faddr(Rx) | O | = | O | -
the strings if the end of either string was reached. [faddrRx) | O [= | O | -
Otherwise, R28 and R27 will contain the addresses of Immediate.Quick | X | - | X [-
the characters in disagreement. Immediate | X c| X |90

To minimize the interrupt latency time, the CMPCF
instruction allows the service of interrupts and faults
following the completion of a bus cycle. After servicing
the interrupt or correction of the fault condition,
instruction execution continues from the point of
interruption.

1.0 7-25

X lllegal Addressing Mode
-~ Unavailable Addressing Mode

Exceptions
lllegal Data Field

PRELIMINARY INFORMATION

CMPCS

Compare Character with Stopper

CMPCS

Syntax Instruction Opcode
cmpcs.b src.b.r, slen.b.r, dst.b.r, dlen.b.r Compare Byte Character String with Stopper 58-02
cmpes.h src.hur, slen.b.r, dst.h.r, dlen.b.r Compare Halfword Character String with Stopper 5A-02
Operation Condition Codes
flags « dst—src cY oV s 7
* - * *

Description

The character string designated by the source operand
is compared to the character string designated by the
destination operand. The comparison operation
continues until a disagreement between the string
contents is detected a string is exhausted or the stop
character in R26 is detected in either string. Following
the execution of this instruction, the S, Z, and CY flags
are updated to reflect the relationship between the
character strings.

The S flag reflects the lexical ordering of the character
strings. If the compare instruction terminates with
different characters, then the S flag reflects the
unsigned comparison of the two strings. If the compare
instruction terminates by reaching the end of either
string without detecting the stop character, the S flag will
indicate the shorter string. The Z flag will be set if and
only if the character strings are of identical length and
content. The CY flag is cleared if the stop character is
detected in either string, otherwise it is set.

During the comparison operation, registers R28 and R27
are used to maintain the source and destination
addresses respectively. Following the execution of the
CMPCS instruction, these registers contain the
addresses of the characters immediately following the
the strings if the end of either string was reached.
Otherwise, R28 and R27 will contain the addresses of
the characters in disagreement.

To minimize the interrupt latency time, the CMPCS
instruction allows the service of interrupts and faults
following the completion of a bus cycle. After servicing
the interrupt or correction of the fault condition,
instruction execution continues from the point of
interruption.

PRELIMINARY INFORMATION

CY Set if the compare operation terminates without
detecting the stop character in either string,
otherwise cleared

OV Unchanged

S Set if src > dst, otherwise cleared

Z Setif src = dst, otherwise cleared

Instruction Format
Format Vlia
Addressing Modes
Addressing Mode src | slen | dst | dlen
Rn X (0] X O
[Rn] 0] - o -
[Rn+] o - 0] -
[-Rn]} (0] - 0] -
disp [Rn/PC] 0] - 0] -
[disp[Rn/PC]] 0] - 0 -
disp1 [disp2[R/PC]] | O - 0] -
faddr) - O -
[/addr] 0] - (0] -
[Rn](Rx) 0] - (0] -
disp [Rn/PC](Rx) 0] - o -
[disp[Rn/PC]](Rx) 0] - 0] -
/addr (Rx) O - O -
[/addr)(Rx) 0] - (6] -
Immediate.Quick X - X -
Immediate X (0] X o
X lllegal Addressing Mode 85548

— Unavailable Addressing Mode

Exceptions
lllegal Data Field

7-26 1.0

CMPF

CMPF

Compare Floating
Syntax Instruction Opcode
cmpf.s srci.s.r, src2.s.r -Compare Short Real 5C-00
cmpt.l src1.lr, src2.l.r Compare Long Real 5E-00
Operation Addressing Modes
Flags « src2 -srci Addressing Mode srcl src2
Rn (o} o)
Description [Rn] (0] 0
The difference of the two source operands is computed [Rn+] o o
and the integer and floating point condition codes are [-Rn] o o
updated to reflect the result of the operation. disp[Rn/PC] (0] 0
If either source operand is a NaN or an infinity, a - [dsp[RnPC]] | O o
Reserved Floating Point Operand exception will occur dispi[disp2[Rn/PC]] | O o
and the flags will remain unmodified. faddr o o
[/addr] 0] (0]
Condition Codes [Rn)Rx) [O o
disp[Rn/PC)(Rx) | © o
cY OV) Z [disp[R/PC])Rx) | © o
* * * * /addr (Rx) o] o
[/addr](Rx) (o] (o}
CY Setif the result is negative, otherwise cleared Immediate.Quick A A
OV Set if unordered, otherwise cleared Immediat A
S Setto the MSB of the resuft st WL
Z Setif the result is zero, otherwise cleared 4 Reserved Addressing Mode
* - - - - Reserved Floating Point Operand
Invalid Floating Point Operation
FIV ~ Set if an invalid operation is attempted,
otherwise unchanged
FZD Unchanged
FOV Unchanged
FUD Unchanged
FPR Unchanged
Instruction Format
Format Il

1.0

7-27

PRELIMINARY INFORMATION

CVT

Convert CVT
Syntax Instruction Opcode

cvt.sl src.s.r, dst.lw Convert Short Real to Long Real 5F+10
cvt.ls src.l.r, dst.s.w Convert Long Real to Short Real 5F«08

Operation Addressing Modes
dst « src Addressing Mode . src dst
Rn (o] (0]
Description [Rn] (0] (0]
The source operand is converted to the destination [Rn+] o o
operand format. The integer and floating point condition [-Rn] o o
codes are updated to refiect the result of the operation. disp[Rn/PC] (0] (0]
[disp[RPC]] | © o)
Condition Codes disp1[disp2[Rn/PC]] | O o
/addr 0] O
cy oV _ S /4 [/addr] | © o
* 0 * * [Rn}Rx) | © o
disp[Rn/PC J(Rx) (o} o
CY Setif the result is negative and non-zero, [disp [Rn/PC] J(Rx) o) o
otherwise cleared faddr (Rx) o o

OV Cleared
S Setif the mantissa sign bit of the result is set, [faddri(Rx) | O o
otherwise cleared Immediate.Quick A X
Z Set if the destination is zero, otherwise cleared Immediate A X
X lilegal Addressing Mode 6-045

FIV FZD FOV FUD FPR

* - * * *

FIV Setif an invalid operation is attempted,
otherwise unchanged
FZD Unchanged

FOV Set if the result is infinite, otherwise unchanged

FUD Set if the destination result is denormal,
otherwise unchanged

FPR Set if a precision error occurs, otherwise
unchanged

Instruction Format
Format I

PRELIMINARY INFORMATION

A Reserved Addressing Mode

Exceptions

Reserved Floating Point Operand
Floating Point Overflow

Floating Point Underflow

Floating Point Precision

7-28 1.0

CVT

Convert CVT
Syntax Instruction Opcode
cvt.ws src.w.r, dst.lw Convert Word to Short Real 5F-00
cvt.wi src.w.r, dst.lw Convert Word to Long Real 5F-11
Operation Addressing Modes
dst « src Addressing Mode src dst
Rn (o) (o}
Description [Rn] (o] o]
The word source operand is converted to the destination [Rn+] o o
operand format. The integer and fioating point condition [-Rn] o 0
codes are updated to reflect the result of the operation. disp [Rn/PC] o o
[disp[Rn/PC]] o (@]
Condition Codes disp1 [disp2 [Rn/PC]] o o
/addr (o} (o}
cYy _ov S Z [/addr] | © 0
* 0 * * [Rn}Rx) | © o
disp [Rn/PC }(Rx) o) o}
CY Setif the result is negative and non-zero, [disp [Rn/PC])(Rx) o o)
otherwise cleared Jaddr (R o o
OV Cleared (Rx)
S Setif the mantissa sign bit of the result is set, [faddr)(Rx) | O o
otherwise cleared immediate.Quick A X
Z Set if the result is zero, otherwise cleared immediate A X

FIV FZD FOV___FUD FPR

- - - - %*

FIV Unchanged
FZD Unchanged
FOV Unchanged
FUD Unchanged
FPR Setif a precision error occurs, otherwise

unchanged
Instruction Format
Format Il
1.0 7-29

X lllegal Addressing Mode
A Reserved Addressing Mode

Exceptions
Floating Point Precision

86-045

PRELIMINARY INFORMATION

CVT

Convert CVT
Syntax Instruction Opcode
cvt.sw src.s.r, dstw.w Convert Short Real to Word 5F«01
cvi.lw src.l.r, dstw.w Convert Long Real to Word 5F-09
Operation Addressing Modes
dst « src Addressing Mode sre dst
Rn o o)
Description [Rn] (0] (0]
The source operand is converted to the word data type. [Rn+] o o
The integer and floating point condition codes are [-Rn] o o
updated to reflect the result of the operation. disp[Rn/PC] 0 0
[disp[Rn/PC]] o} o)
Condition Codes disp1 [disp2 [Rn/PC]] o 0
/addr (o) o]
cY oV S z [/addr] O o
- * * * [Rn])(Rx) O o)
disp [Rn/PC }(Rx) 0 @)
cY Unchanged [dlSp[Rﬂ/PC]](Rx) 0] O
OV Set if integer overflow occurs, otherwise cleared faddr (Rx) o o
Set if the result is negative, otherwise cleared [/addr)(Rx) (o] 0
Z Setif the result is zero, otherwise cleared Immediate.Quick A X
FIV _FZD FOV__FUD _ FPR . Immediate | A X
X lllegal Addressing Mode 86-045
* - - - * A Reserved Addressing Mode
FIV Setif aninvalid operation is attempted, Exceptions
otherwise unchanged , . .
Reserved Floating Point Operand
FZD Unchanged . . . ;
Invalid Floating Point Operation
FOV Unchanged Floating Point Precisi
FUD Unchanged oating Foint Frecision
FPR Set if a precision error occurs, otherwise
unchanged
Instruction Format
Format Il
PRELIMINARY INFORMATION 7-30 1.0

CVTD.PZ

Convert Decimal

CVTD.PZ

Syntax Instruction Opcode

cvtd.pz src.b.r, dst.h.w, pat.b.r Convert Packed to Zoned Decimal 59-10

Operation Addressing Modes
tmp[3:0] « src[7:4] Addressing Mode src dst pat
tmp[74] <« O Rn (0] o] -
tmp[11:8] « src[3:0] [Rn] o o _
dst[7:0] « tmp[7:0] v pat[7:0] [—Rn] o o _
dSt“ 5:8] « tmp[15:8]v pat[?O] disp [Rn/PC) fo) o) -
i Sf§= 0 tzhe" [disp[R0PC]] | © 0 -

(_. . .

else disp1 [disp2 [Rn/PC]} (o} (o} -
Z <0 faddr (o} (o} -
[/addr) (o} (o} -
o . [Rn](Rx) o o -
Description disp[RPCI(Rx) | O o -
The byte length source operand is unpacked by [disp [R/PC](Rx) o. o -
performing a bit-wise OR or the digits with the pattern faddr (Rx) o o _
qperand. [/addr }(Rx) o} o -
“rior to the conversion, the source operand is checked Immediate.Quick o X -
% verify a that a valid BCD representation exists in the Immediate fo) X 1)

unmasked portion of the data. If either value is not a legal
BCD digit (0-9), a Decimal Format exception will occur
and the destination will remain unchanged.

Condition Codes
CcY oV S Z

- - - *

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged if the source operand is zero,
otherwise cleared

Instruction Format
Format Vilc

1.0 7-31

X lllegal Addressing Mode
= Unavailable Addressing Mode

Exceptions
Decimal Format

PRELIMINARY INFORMATION

CVTD.ZP

CVTD.ZP

Convert Decimal
Syntax Instruction Opcode
cvid.zp src.h.r, dst.b.w, pat.b.r Convert Zoned to Packed Decimal 59-18
Operation Addressing Modes
it (src[7:4]=pat[7:4])or Addressing Mode src dst pat
('src[15:12] = pat{7:4]) then
Decimal_Format_Exception Rn | O o -
it (src[3:0]>9)or(src[11:8]>9)then [Rn] o o -
Decimal_Format_Exception [Rn+] 0 O -
dst[3:0] « src[11:8] [-Rn] o o -
Fist[7:4] « src[3:0] disp [Rn/PC] o) o -
it dst > 0 ‘h‘;_” [disp[RWPC]] | © o -
else < disp1 [disp2[Rn/PC]] | © o -
Z <0 /addr o} (o} -
[/addr] o) 0] -
. [Rn](Rx) (o} o -
Description disp[RVPCYRx) | 0 | © -
The halfword source operand is converted from zoned [disp [R/PC] J(Rx) o o -
decimal format to packed decimal format and stored in faddr (Rx) 0 o -
thc? destination oper.and. . [/addr](Rx) o o -
Prior to the conversion, the source operand is checked Immediate.Quick e} X -
to verify that a valid BCD representation exists in the Immediate o) X o)
lower nibbles of the upper and lower bytes. The upper X Teoal Addressing Mod Ty
nibbles are then compared to the upper nibble of the Z (jr9eaiiable Addressing Mode
mask pattern. If either condition exists, a Decimal Format
exception will occur and the destination will remain .
Exceptions
unchanged.)
Decimal Format
Condition Codes
cY oV S Z
- - - *
CY Unchanged
OV Unchanged
S Unchanged
Unchanged if the destination is zero, otherwise
cleared
Instruction Format
Format Vlic
PRELIMINARY INFORMATION 7-32 1.0

DBcc

Decrement and Conditionally Branch

DBcc

Syntax instruction Opcode
dbcce Rn.w.rw, disp16 Decrement and Branch on Condition CBex/C7+x
Operation Condition Codes
Rn « Rn-1
. e CY (o) S
if (condition and Rn =0) then
PC « PC + sign_extended(disp16) - - -
else
PC « NextPC CY Unchanged
OV Unchanged
L S Unchanged
Description Unchanged
The specified general purpose register is decremented
and if not zero and the specified condition is met, the |nstruction Format
branch is taken. Format VI
The PC relative addressing mode is implicitedly selected
by these instructions. The 16-bit displacement field is pnemonic Condition Opcode
sign extended to 32 bit length and added to the PC to DBGT ((S®OV)vZ)=0 C7-7
compute the target address. The value of the PC used DBGE (S®0V)=0 C7+6
he tar ress is the first f th DBLT (S®O0V)=1 CE-6
to compute the ta get.add es:s s the byte of the DBLE ((S®OV)vZ)=1 067
decrement and branch instruction. DBH (CYvZ)=0 C73
DBNL CY=0 C741
Mnemonic Condition DBL CY =1 C6e1
. - . DBNH (CYvZ)=1 C6:3
Signed DBGT Branch if Greater DBE Z =1 C6+2
DBGE Branch if Greater or Equal DBNE Z=0 C7.2
DBLT Branch if Less DBV OV = 1 C60
DBLE Branch if Less or Equal DBNV OV=0 C7.0
Unsigned DBH Branch if Higher DBN S=1 C64
DBNL Branch if Not Lower DBP S=0 C7-4
DBL Branch if Lower DBC CY =1 C6-1
DBNH Branch if Hot Higher DBNC Cy=0 C7-1
DBZ Z=1 C6-2
Flags DBE Branch if Equal DBNZ Z=0 C7+2
DBNE Branch if Not Equal DBR Always C6+5
DBV Branch if Overflow
DBNV Branch if No Overflow
DBN Branch if Negative Exceptions
DBP Branch if Positive None
DBC Branch if Carry
DBNC Branch if No Carry
DBZ Branch if Zero
DBNZ Branch if Not Zero
DBR Unconditional Branch

1.0

7-33

PRELIMINARY INFORMATION

DEC

Decrement D EC

Syntax instruction Opcode
dec.b dst.b.rw Decrement Byte DO0/1
dec.h dst.h.rw Decrement Halfword D2/3
dec.w dst.w.rw Decrement Word D4/5

Operation Addressing Modes

dst « dst-1 Addressing Mode dst
Rn (0]
Description [Rn] (0]
The contents. of the destination operand are [Rn+] o
decremented. [-Rn] o
If the immediate quick addressing mode is specified for disp [Rn/PC] 0
the source operand, the immediate data is zero ~ [disp[Rn/PC]] o
extended to the source operand length before disp1 [disp2 [Rn/PC]] o
performing the operation. /addr 0
The DEC instruction is a shorter encoding for the more [/addr] ©
general instruction [Rn](Rx) o
disp [Rn/PC }(Rx) 0
sub #1, dst [disp [Rn/PC])(Rx) o
/addr (Rx) 0]
Condition Codes [/addr)(Rx) (o}
cy oV s z Immediate.Quick X
N N N N Immediate X

X lllegal Addressing Mode

CY Setif a borrow is generated, otherwise cleared)
OV Setif integer overflow occurs, otherwise cleared Exceptions
S Set if the result is negative, otherwise cleared None
4 Set if the result is zero, otherwise cleared
Instruction Format
Format lli
PRELIMINARY INFORMATION 7-34

86-056

1.0

DISPOSE Dispose DlSPOSE

Syntax Instruction Opcode
dispose Dispose Stack Frame cC

Operation _
SP « FP
FP « [SP+]

Description

The DISPOSE instruction deletes the current stack
frame by copying the contents of the frame pointer (R30)
to the stack pointer (R31) and restoring the original frame-
pointer from the stack.

Condition Codes
CcY Qv S Z

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format V

Exceptions
None

1.0 7-35 PRELIMINARY INFORMATION

DIV

DIV

Divide
Syntax Instruction Opcode
div.b src.b.r, dst.b.rw Divide Byte A1
div.h src.h.r, dst.h.rw Divide Halfword A3
div.w src.w.r, dst.w.rw Divide Word A5
Operation Addressing Modes
dst « dst+src Addressing Mode src dst
Rn (o} (o]
Description [Rn] o))
The contents of the destination operand is replaced with [Rn+] o o
the quotient of the source and destination operands. [-Rn] o o
The quotient is computed according to the rules of disp [Rn/PC] o] (o)
signed division. Overflow occurs when the negative [disp[Rn/PC]] 0 (o]
maximum integer is divided by -1. disp1 [disp2[Rn/PC]] o} 0
The destination will remain unchanged if an integer /addr o o
overflow or Zero Divide exception occurs. {/addr] o o
If the immediate quick addressing mode is specified for . [Rn)(Rx) | O O
the source operand, the immediate data is zero disp[RVPCJ(Rx) | O o
extended to the source operand length before [disp[Rn/PC]}(Rx) | O o
performing the operation. /addr (Rx) | O o
[/addr)(Rx) O 0
Condition Codes Immediate.Quick O X
Immediate o) X
Cy OV S Z X Tegal Addressing Mode 50
- * * *
oY Unch g Exceptions
nchange .
OV Setif integer overflow occurs, otherwise cleared Zero Divide
S Set if the result is negative, otherwise cleared
y4 Set if the result is zero, otherwise cleared
Instruction Format
Format |, I
PRELIMINARY INFORMATION 7-36 1.0

DIVF

Divide Floating ' DIVF
Syntax Instruction Opcode
divf.s src.s.r, dst.s.rw Divide Short Real 5C+1B
divf.l src.Lr, dst.l.rw Divide Long Real 5E-1B
Operation Addressing Modes
dst « dst+src Addressing Mode ste dst
Rn 0] (0]
Description [Rn] o} o}
The quotient of the source operand and destination [Rn+] o o
operand is stored in the destination operand. Both the [-Rn] o o
integer and floating point condition codes are updated to disp[Rn/PC] o o
reflect the result of the operation. [disp{ Rn/PC}] (o] o]
If the destination operand is zero and the source disp1[disp2[Rn/PC]] | O o
operand a non-zero normalized number, the result is /addr o o
zero with the sign determined by the exclusive OR of the [/addr] o o
source and destination signs. {Rn)(Rx) o o
disp [Rn/PC J(Rx) (o} (o}
Condition Codes [disp[R/PC])(Rx) | © o)
/addr (Rx) O (o}
cYy OV S Z [/faddr(Rx) | © o
* 0 * * Immediate.Quick A X
Immediate A X

CY Set if the result is negative and non-zero,
otherwise cleared
OV Cleared
S Setif the mantissa sign bit of the result is set,
otherwise cleared
z Set if the result is zero, otherwise cleared

FIV FZD FOV__FUD FPR

* * * * *

FIV Set if aninvalid operation occurs, otherwise

unchanged

FZD Set if division by zero occurss otherwise
unchanged

FOV Set if the result is infinite, otherwise unchanged

FUD Set if the destination result is denormal,
otherwise unchanged

FPR Set if a precision error occurs, otherwise
unchanged

Instruction Format
Format Il

1.0 7-37

86-045

Hlegal Addressing Mode
A Reserved Addressing Mode

Instruction Exceptions

Reserved Floating Point Operand
Invalid Floating Point Operation
Floating Point Divide by Zero
Floating Point Overflow

Floating Point Underfiow

Floating Point Precision

PRELIMINARY INFORMATION

DIVU

Unsigned Divide

DIVU

Syntax Instruction Opcode
divu.b src.b.r, dst.b.rw Divide Unsigned Byte B1
divu.h src.h.r, dst.h.iw Divide Unsigned Halfword B3
divu.w src.w.r, dst.w.rw Divide Unsigned Word B5
Operation Addressing Modes
dst « dst +src (unsigned) Addressing Mode src dst
Rn (o} 0
Description [Rn] o 0]
The contents of the destination operand is replaced with {Rn+] o o
the quotient of the source and destination operands. [-Rn] o o
The quotient is computed according to the rules of disp [Rn/PC] o 0
unsigned division. [disp[Rn/PC]] o] 0
The destination will remain unchanged if a Zero Divide dispi[disp2[Rn/PC]] | O o
exception occurs. /addr 0 0
If the immediate quick addressing mode is specified for [/addr] | O ©
the source operand, the immediate data is zero _ [Rn](Rx) 0 o
extended to the source operand length before disp[RnPCI(Rx) | O 1%
performing the operation. [disp [Rn/PC]])(Rx) o o
/addr (Rx) o] 0]
Condition Codes [/addr}(Rx) | O o
Immediate.Quick o) X
cY oV S Immediate @) X

—_ 0 *

CY Unchanged
OV Cleared
S
z

Set if the result is negative, otherwise cleared
Set if the result is zero, otherwise cleared

Instruction Format
Format |, Il

PRELIMINARY INFORMATION

X lllegal Addressing Mode

Exceptions
Zero Divide

7-38

86-046

1.0

DIVX

DIVX

Divide Extended
Syntax Instruction Opcode
divx src.w.r, dst.d.rw Divide Extended A6
Operation Addressing Modes
dst « dst+src Addressing Mode src dst
Rn @) 0]
Description [Rn] o] (o]
The doubleword contents of the destination operand is [Rn+] o o
divided by the word contents of the source operand [Rn] o o
according to the rules of signed division. The resulting disp [Rn/PC] e} 0
32-bit quotient is stored in the lower word of the [disp[Rn/PC]] 0 (0]
destination and the 32-bit remainder is stored in the disp1 [disp2 [Rn/PC]] (o] o]
upper word of the destination. faddr o) o)
[faddr] | © o
63 0
Dividend dst [Rn](Rx) o 0
disp [Rn/PC J(Rx) o} o)
31 0 [disp[Rn/PC]](Rx) 0] 0]
-+ Divisor src /addr (Rx) O o)
[/addr](Rx) o] 0]
a1 0 31 o Immediate.Quick o) X
Remainder Quotient dst Immediate o X
86-046

j¢—— Upper Word/Register ——sja—— Lower Word/Register ———s]

Overflow occurs when the negative maximum integer is
divided by -1. The destination operand does not change
when an overflow or a Zero Divide exception occurs.

If the immediate quick addressing mode is specified for
the source operand, the data is zero extended to the
source operand length before performing the operation.

Condition Codes
cY oV S Y4

- * * *

CY Unchanged
OV Set if integer overflow occurs, otherwise cleared
Set if the result is negative, otherwise cleared
Z Set if the result is zero, otherwise cleared

Instruction Format
Format i, ll

1.0 7-39

X lllegal Addressing Mode

Exceptions
Zero Divide

PRELIMINARY INFORMATION

DIVUX

DIVUX

Unsigned Divide Extended
Syntax Instruction Opcode
divux src.w.r, dst.d.rw Divide Extended Unsigned B6
Operation Addressing Modes
dst « dst+src (unsigned) Addressing Mode src dst
Rn o) 0]
Description [Rn] (o] o}
The doubleword contents of the destination operand is [Rn+] o o
divided by the word contents of the source operand [Rn] o o
according to the rules of unsigned division. The disp [Rn/PC] 0 0
resulting 32-bit quotient is stored in the lower word of the [disp[RnPC]] (o] o]
destination and the 32-bit remainder is stored in the disp1 [disp2 [Rn/PC]] (o] 0
upper word of the destination. faddr (o] (o]
The destination operand does not change when an [/addr] o o
overflow or a Zero Divide exception occurs. [Rn](Rx) o o
If the immediate quick addressing mode is specified for disp[RVPCY(Rx) | O o
the source operand, the immediate data is zero {disp[Rn/PC1])(Rx) o} 0
extended to the source operand length before /faddr(Rx) | O o
performing the operation. [/addr)(Rx) o o
Immediate.Quick 0] X
Condition Codes Immediate o) X
X lllegal Addressing Mode 86-046
cY oV S Y4
_ * . * Exceptions
Zero Divide
CY Unchanged
OV Setif integer overflow occurs, otherwise cleared
Set if the result is negative, otherwise cleared
Set if the result is zero, otherwise cleared
Instruction Format
Fomat |, Il
PRELIMINARY INFORMATION 7-40 1.0

EXTBF

EXTBF

Extract Bit Field
Syntax Instruction Opcode
extbfs bsrc.w.r, blen.b.r, dst.w.w Extract Sign Extended Bit Field 5D-08
extbfz bsrc.w.r, blen.b.r, dstw.w Extract Zero Extended Bit Field 5D-09
extbfl bsrc.w.r, blen.b.r, dst.w.w Extract Left Justified Bit Field 5D<0A
Operation Addressing Modes
dst < bitfield Bit Address bsrc|blen] dst Byte Address
R X | O O | Rn
Description @[Rn]| O | - O | [Rn]
The designated bit field is extracted using the specified @[Rn+]| O | -~ § O | [Rn+]
mode and stored in the destination operand. @-Rn]] O | - § O [[-Rn]
If the bit field length is zero, zero will be stored in the offset@ Rn]| O | — § O |disp{Rn]
destination operand. offset@ PC]| O | - § O |disp[PC]
The sum of the bit offset and the bit field length must not @[disp[Rn]]| O | - § O | [disp{Rn]]
exceed thirty-two, otherwise an lllegal Data Field @[disp[PC]}} O | - § O | [disp[PC]]
exception will occur. offset@] d.lsp[Rn]}| © | - O | dispi[disp2[Rn]]
offset@[disp] PC}]] O | - O | disp1[disp2[PC]])
. @/addr{ O | - O | /addr
Condition Codes @[/addr]] © | - § © | [/addr]
cY _ov S z Rx@[Rn]| 0 | - § O |[Rn)(Rx)
- - - - Rx@{Rn]| O | - O | disp[Rn])(Rx)
rR@Pc]| 0 | - § O |disp[PC](Rx)
CY Unchanged Rx@[disp[Rn]]| O | — § O |[disp[Rn]](Rx)
OV Unchanged Rx@[disp{PC]]}| O | - O | [disp[PC]](Rx)
g B"CRangeg Rx@/addr| 0 | - § O | /addr (Rx)
nchange Rx@{/addr]| 0 | - B O | [/addr](Rx)
Immediate.Quick| X | - X | Immediate.Quick
Instruction Format Immediate| X | O § X | Immediate
Format Vllb 86.053

1.0

X lllegal Addressing Mode

—~ Unavailable Addressing Mode

Exceptions
llegal Data Field

7-41

PRELIMINARY INFORMATION

GETATE

Get Area Table Entry G ETATE
Syntax Instruction Opcode
getate va.ptr.r, dst.d.w Get Area Table Entry 05
Operation Addressing Modes
dst « ATE(va) Addressing Mode va dst
Rn (o] 0]
Description [Rn] o e}
The contents of specified ATE are transferred to the [Rn+] o o
doubleword destination operand. The virtual address [-Rn] o o
and the section designator register (R28) are used to disp [Rn/PC] o o
identify the ATE to be referenced. [disp[Rn/PC]] (0] o
If the contents of R28 are OFFFFFFFFH, the virtual disp1[disp2[Rn/PC]] | ©O 0
address operand is translated using the current virtual /addr 0 o
address space. Following the execution of the [/addr] o o
instruction, the Z flag is updated to reflect the result of [Rn)}(Rx) o o
the translation operation. The Z flag is cleared if the disp [Rn/PC J(Rx) o o
translation is successful and set if the referenced [disp [Rn/PC])(Rx) (0] (0]
ATBR/ATLR is invalid. faddr (Rx) (0] (o]
Otherwise, R28 is assumed to contain a pointer to an [/addr](Rx) o o
area table and a lookup of the specifed ATE is Immediate.Quick o X
performed. No validity checks are performed on the Immediate o X
contents of the ATE. MMegal Addressing Mode 86-078
If the immediate quick addressing mode is specified, the
immediate data is zero extended to 32-bit length and Exceptions
used as the virtual address. Privileged Instruction
This instruction can be executed in either the real or
virtual address mode.
Condition Codes
cY oV S Z
-_ _ _— *
CY Unchanged
OV Unchanged
S Unchanged
Z Set if the address translation is invalid, otherwise
cleared
Instruction Format
Format |, Il
PRELIMINARY INFORMATION 7-42 1.0

GETPSW

GETPSW

Get PSW

Syntax Instruction Opcode

getpsw dst.w.w Get Program Status Word F6/7
Operation Addressing Modes
dst « PSW Addressing Mode dst
Rn (0]
Description [{Rn] o]
The contents of the Program Status Word (PSW) are [Rn+] o
copied to the destination operand. [-Rn] (0]
disp [Rn/PC) 0]
Condition Codes [disp[Rn/PC]] o
disp1 [disp2 [Rn/PC]] 0
CcY oV S Z /addr 0
- - - - [/addr] (o}
[Rn](Rx) (o}
CY Unchanged disp [Rn/PC](Rx) o)
P s FPOINR) | 0
Z Unchanged faddr (Rx) o
[/addr }(Rx) (o}
instruction Format Immedlate.QL'uck X
m Immediate X
Format lllegal Addressing Mode o 86-056
Exceptions
None

1.0 7-43

PRELIMINARY INFORMATION

GETPTE

Get Page Table Entry GETPTE
Syntax Instruction Opcode
getpte va.ptr.r, dstw.w Get Page Table Entry 04
Operation Instruction Format
dst « PTE(va) Format |, li

Description Addressing Modes
The contents of specified PTE are transferred to the Addressing Mode va dst
word destination operand. The virtual address and the Rn o o
section designator register (R28) are used to identify the [Rn] o o
PTE to be referenced. [Rn+] o o
If the contents of R28 are OFFFFFFFFH, the virtual [-Rn] o) o)
address operand is translated using the current virtual disp [Rn/PC] e} o)
address space. Following the execution of the [disp[Rn/PC]] o o
instruction, the CY and Z flags are updated to reflect the disp1 [disp2 [RnPC 1] o fo)
result of the translation operation. The CY flag will be set Jaddr o) o
if the area is not present (i.e, swapped out to a disk) while [/addr] o o
the Z flag is set if the referenced address translation fails. [Rn](Rx) o o
If either the Z or CY flags are set, the destination remains disp [R/PC](Rx) o o 4
unchanged. [disp[RVPC])(Rx) | © o
Otherwise, R28 is assumed to contain a pointer to an /addr (Rx) o o
area table and a lookup of the specifed PTE is [/addr }(Rx) o o
performed. No validity checks are performed on the Immediate.Quick o N
contents of the PTE. Immediate o X
If the immediate quick addressing mode is specified, the

immediate data is zero extended to 32-bit length and
used as the virtual address.

This instruction can be executed in either the real or
virtual address mode.

Condition Codes
CcY (o) S Y4
* -— -— *

CY Setifthe areais not present, otherwise cleared
OV Unchanged
S Unchanged
VA Set if the address translation is invalid, otherwise
cleared

PRELIMINARY INFORMATION

X lllegal Addressing Mode

Exceptions
Privileged Instruction

7-44

86-078

1.0

GETRA

Get Real Address

GETRA

Syntax Instruction Opcode
getra va.ptr.r, dst.w.w Get Real Address 03
Operation Condition Codes
dst « real_address(va) cY oV s z
* —_— - *

Description

The physical address of the source virtual address is
computed and transferred to the destination operand.
The virtual address and the section designator register
(R28) are used to identify the area table used to perform
the address translation.

If the contents of R28 are OFFFFFFFFH, the virtual
address operand is translated using the current virtual
address space. Following the execution of the
instruction, the CY and Z flags are updated to reflect the
result of the translation operation. The CY flag will be set
if the area or page is not present (i.e, swapped out to a
disk) while the Z flag is set if the address translation fails
ji.e, an invalid area table or the page is I/O mapped). If
either the Z or CY flags are set, the destination operand
remains unchanged.

Otherwise, R28 is assumed to contain a pointer to an
area table and the PTE is located in the specified page
table. No validity checks are performed on the contents
of the PTE and no data reference is made.

If the immediate quick addressing mode is specified, the
immediate data is zero extended to 32-bit length and
used as the virtual address.

This instruction can be executed in either the real or the
virtual address mode.

Instruction Format
Format !, Il

1.0 7-45

CY Setif the area is not present, otherwise cleared
OV Unchanged
S

Unchanged
Z Setif the address transiation is invalid, otherwise
cleared
Addressing Modes
Addressing Mode va dst
Rn 0] o
[Rn] o] (@]
[Rn+] o (0]
[-Rn} o] o]
disp[Rn/PC] (o] (o]
[disp[Rn/PC]] 0] (0]
disp1 [disp2 [Rn/PC]] o) o
/addr o) o]
[/addr} 0] 0]
[Rn](Rx) 0] o]
disp [Rn/PC J(Rx) 0] (o]
[disp[Rn/PC1](Rx) o (o]
/addr (Rx) 0] o)
[/addr)(Rx) (o) 0]
Immediate.Quick 0 X
Immediate (o] X

X legal Addressing Mode 86-078

Exceptions
Privileged Instruction

PRELIMINARY INFORMATION

HALT | Halt

HALT

Syntax Instruction
halt Hatlt and Wait for Interrupt

Opcode

00

Operation
halt

Description

The processor halts and waits for an interrupt. Following
the execution of the interrupt handler, program
execution will continue with the instruction following the
HALT instruction.

Condition Codes
CcY oV S Z

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format V

Exceptions
Privileged Instruction

PRELIMINARY INFORMATION 7-46

1.0

IN

Input I N

Syntax Instruction Opcode
in.b port.b.r, dst.b.w Input Byte 21
in.h port.h.r, dst.h.w Input Halfword 23
inw port.w.r, dstw.w Input Word 25
Operation Addressing Modes
dst « port Addressing Mode port dst
Rn X o}
Description [Rn] o] o]
The contents of the specified input port are copied to [Rn+] o o
the destination operand. [-Rn] o o
disp[Rn/PC] O O
Condition Codes [disp[Rn/PC]] | O o
disp1 [disp2 [Rn/PC]] (0] 0]
cy OV /faddr | O o
- - [/addr] o] (0]
[Rn)(Rx) o o)
CY Unchanged disp[Rn/PC])(Rx) | © o)
%V ﬂggngﬂggg [disp[RPC]}(Rx) | © o)
Unchanged /addr (Rx) | O o)
[/addr }(Rx) o] (0]
vln struction Format Immediate.Qt.Jick X X
Immediate X X
Format, I X Tegal Addressing Mode 56087
Exceptions
Privileged Instruction
1.0 7-47 PRELIMINARY INFORMATION

INC

INC

Increment
Syntax Instruction Opcode
inc.b dst.b.rw Increment Byte D8/9
inc.h dst.h.rw Increment Halfword DA/B
inc.w dst.w.rw Increment Word DC/D
Operation Addressing Modes
dst « dst+1 Addressing Mode dst
Rn O
Description [Rn] | O
The contents of the destination operand are [Rn+] o
incremented. [-Rn] o
If the immediate quick addressing mode is specified for disp [Rn/PC] o
the source operand, the immediate data is zero ~ [disp[Rn/PC]] o
extended to the source operand length before disp1 [disp2 [Rn/PC]] o
performing the operation. /addr o
The INC instruction is a shorter encoding for the more [/addr] 0o
general instruction [Rn](Rx) 0
disp [Rn/PC }(Rx) 0]
add #1, dst [disp[RVPCI(Rx) | ©
/addr (Rx) (o}
Condition Codes [/addr }(Rx) o}
cY oV s 7 Immediate.Quick X
. N R N Immediate X
Megal Addressing Mode 86056
CY Setif a carry is generated, otherwise cleared . .
OV Set if integer overflow occurs, otherwise cleared Instruction Exceptions
S Set if the result is negative, otherwise cleared None
V4 Set if the result is zero, otherwise cleared
Instruction Format
Format I}l
PRELIMINARY INFORMATION 7-48 1.0

INSBF

INSBF

Insert Bit Field
Syntax Instruction Opcode
insbir src.w.r, bdst.w.rw, blen.b.r Insert Right Justified Bit Field 5D-18
insbfl src.w.r, bdst.w.rw, blen.b.r Insert Left Justified Bit Field 5D-19
Operation Addressing Modes
bitfield « src Bit Address bsrc|blen] src Byte Address
Rn| X { O O | Rn
Description @[Rn]] O | - O | [Rn]
The source operand is converted to a bit field of @Rn+]| O | — B O [[Rn+]
specified length and stored in the destination operand. @-ARn]| O | - § O [[Rn]
No transfer will occur if the bit field length is zero. ofset@Rn] O | - § O | disp[Rn]
The sum of the bit offset and the bit field length must not °ﬂ:°:t@[np ©l g - 8 d;s,p[P:]
exceed thirty-two, otherwise an lllegal Data Field @[disp[Rn]] - [disp[An]]
exception will occur. " tg{ gfsg ;C}]]] g - g zf"si’[zc]2] .
oiise n -
If the immediate quick addressing mode is specified for 'S !SP [ISP [Rn]]
. . : offset@[disp{ PC]]| O | - O | disp1[disp2[PC]]
the source operand, the immediate data is zero
. @/addr| O - O | /addr
extended to the word length before performing the @{/addr]| O | - 0 | [/addr]
insertion operation. Rx@[Rn]| O | - o | [(RnlRx)
N Rx@[Rn]| O | - O |disp[Rn)(Rx)
Condition Codes rR@[Pc]| o | - O | disp[PC(Rx)
cY ov S Y4 Rx@[disp[Rn]]| O | - O | [disp[Rn]](Rx)
- - - - Rx@[disp[PC]]| © | - B O | [disp[PC])(Rx)
Rx@/addr| O | ~ O | /addr (Rx)
CY Unchanged Rx@[/addr}j O | - O | {/addr](Rx)
OV Unchanged Immediate.Quick] X | - O | Immediate.Quick
S Bncp‘anged Immediate| X | O § O | Immediate
z nchanged X lliegal Addressing Mode ’ 86-051
- Unavailable Addressing Mode
Instruction Format
Format Vllc Exceptions

1.0 7-49

lllegal Data Field

PRELIMINARY INFORMATION

JMP Jump JMP

Syntax Instruction Opcode
imp target.b.ex Jump De6/7
Operation Addressing Modes
PC « target Addressing Mode target
Rn X
Description [Rn] 0
The effective address of the destination is computed [Rn+] o
and program control is transferred unconditionally to the [Rn] o
destination. disp [Rn/PC] 0
The destination operand is treated as byte data for the ~ [disp[RnPC]] | O
purpose of computing pointer changes for the disp1[disp2[Rn/PC]] | O
autoincrement, autodecrement, or scaled indexed /addr o
addressing modes. [faddr] (0]
[Rn)Rx) | ©
Condition Codes disp[Rn/PC)(Rx) | O
[disp [Rn/PC])(Rx) (o]
cy OV S Z /addr (Rx) | ©
- - - - [/addr}(Rx) 0]
Immediate.Quick X
CY Unchanged Immediate X
OV Unchanged . ST
S Unchanged X lllegal Addressing Mode

Z Unchanged
Exceptions
Instruction Format None
Format IlI

PRELIMINARY INFORMATION 7-50 1.0

J S R A Jump to Subroutine !JS R

Syntax Instruction Opcode
jsr target.b.ex Jump to Subroutine E8/9
Operation Addressing Modes
temp « target Addressing Mode target
[-SP] « NextPC Rn X
PC « temp [Rn] o
[Rn+] 0]
Description _ . [(-Rn] o)
The effective address of the destination is computed disp[Rn/PC] o
and the address of the next instruction is pushed onto [disp[Rn/PC] o}
the stack. Program control is then transferred to the disp1 [disp2 [Rn/PC]] o)
destination. faddr 0
The destination operand is treated as byte data for the : [/addr] o
purpose of computing pointer changes for the [Rn](Rx) o
autoincrement, autodecrement, or scaled indexed disp [Rn/PC](Rx) o
addressing modes. [disp[Rn/PC]](Rx) o
if the destination operand is addressed using R31 (SP) ' /addr (Rx) o
in conjunction with an autoincrement/autodecrement [/addr}(Rx) | O
addressing mode, the result is unpredicable. Immediate.Quick X
Immediate X
Condition Codes X lilegal Addressing Mode be-071
oy ov S 4 Exceptions
_ - — — None

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format Ii!

1.0 7-51 PRELIMINARY INFORMATION

LDPR

Load Privileged Register

LDPR

Syntax Instruction Opcode
Idpr src.w.r, regiD.ww Load Privileged Register 12
Operation Condition Codes
PrivilegedRegister(reglD) « src cy ov s 7
Description
The source operand is loaded into the specified CY Unchanged
privileged register. OV Unchanged
S Unchanged
iD Register Name Unchanged
0 ISP Interrupt Stack Pointer
1 LOSP Level 0 Stack Pointer .
2 L1SP Level 1 Stack Pointer Instruction Format
3 L2spP Level 2 Stack Pointer Format |, I
4 L3SP Level 3 Stack Pointer
5 SBR System Base Register .
7 SYCW System Control Word Addressmg Modes
8 TKCW Task Control Word Addressing Mode src reglD
15 PSW2 Emulation Mode Program Status Word Rn o o
16 ATBRO Area Table Base Register 0
7 ATLRO Area Table Longih Register 0 [Rn] o o
18 ATBR1 Area Table Base Register 1 [Rn+] @) (@)
19 ATLR1 Area Table Length Register 1 [-Rn] (0] O
20 ATBR2 Area Table Base Register 2 disp [Rn/PC] fo) o)
21 ATLR2 Area Table Length Register 2 .
22 ATBR3 Area Table Base Register 3 . [‘d'SP [Rn/PC]] o 0
23 ATLR3 Area Table Length Register 3 disp1 [disp2 [Rn/PC] o o
24 TRMOD Trap Mode Register /addr O O
25 ADTRO Address Trap Register 0 [/addr] 0] o
26 ADTR1 Address Trap Register 1 [Rn])(Rx) fo) o)
27 ADTRMO Address Trap Mask Regfster 0 disp [Rn/PC](Rx) o o
28 ADTRM1 Address Trap Mask Register 1 .
86-128 [disp[Rn/PC])(Rx) O @)
/addr (Rx) O 0]
A number of restrictions and precautions relating to the [faddr J(Rx) (0] 0
execution of the LDPR instruction are listed below : Immediate.Quick 0 0
. Loading to area table base and length registers Immediate | O °
clears TLB entries with corresponding section 86-086
numbers.
» The TLB is cleared if the virtual mode is changed to Exceptions

physical mode in the STCW register.

Privileged Instruction

llegal Data Field

Instruction execution results are unpredicatable if an
invalid register 1D is specified.

PRELIMINARY INFORMATION

7-52

1.0

the new context.

7-53

Privileged Instruction

LDTASK Load Task LDTASK
Syntax Instruction Opcode
idtask list.w.r, TCBptr.w.r Load Task Context 01
Operation Condition Codes

TaskContext « [TCB] cY oV S Y4
Description
The context designated by the TCB pointer is installed 8\\{, gggagzggg
as the current task context. The task context consists of: S Unchanged
» General purpose registers (R30-R0) Z Unchanged
The general purpo%e bregisters of the new t%sk
context is controlled by the list operand. he
register list is scanned sequentially from the LSB to Instruction Format
the MSB. The bits set in the list operand identify Format i, I
which general purpose registers are restored. Bit 31
of the register list is Reserved for Future Use and
must be zero. AddressingModes') -
Addressing Mode list | TCBptr
R‘RIR'R'RlR'RlR'RIRlP.lR]R'RlR'Rlﬁik‘klRlR'R'R[R,R'le'RIRIR|R‘R Rn o 0
F3222222222211111111119876543210
UG98 765432109876543210 [Rn] (o} 0]
86-130 [Rn+] 0] (@)
[-Rn] o) o
Area table register pairs disp [Rn/PC] o o)
The area table bage apg?_ length regiséers [disp[Rn/PC1] (0] (o]
(ATBRO/ATLRO to ATBR3/ATLR3) are restored as disp1 [disp2 [Rn/PC o o
specified by the STCW register if virtual mode is kpt [diep2 [An /a dLi o o
enabled and any TLB: entries associated with the
updated sections are marked as invalid. In real [/addr] o o
mode, area table registers are not stored in the task [Rn](Rx) 0 (o]
context. disp [Rn/PC J{ Rx) 0] 0]
, [disp [Rn/PC])(Rx) o) o}
Stack pointers (LOSP-L3SP) /addr (Rx) o o
The stack pointers enabled for switching in the [/addr }(Rx) 0 o
STCW are restored. If the current context is using ' diate.Quick o o
the interrupt stack, LOSP will become the new stack mmediate.LuiC
pointer. Immediate 0 0
86-083
Task Control Word (TKCW)
The TKCW is updated with the Task Control Word for Exceptions

PRELIMINARY INFORMATION

MOV

MOV

Move
Syntax Instruction Opcode
mov.b src.b.r, dstb.w Move Byte 09
mov.h src.h.r, dst.h.w Move Halfword 1B
mov.w src.w.r, dstw.w Move Word 2D
mov.d src.d.r, dst.d.w Move Doubleword 3F
Operation Addressing Modes
dst « src Addressing Mode src dst
Rn (0] 0]
Description [Rn] 0 o]
The data designated by the source operand is copied to [Rn+] o o
the destination operand. [-Rn] o o
If the immediate quick addressing mode is specified for disp[R0/PC] | O o
the source operand, the immediate data is zero ~ [disp[RnPC]] | O o
extended to the source operand length before being disp1 [disp2 [Rn/PC]] o o
transferred to the destination. faddr o o
On the puPD70616 microprocessor, a Reserved [/addr] © o
Addressing Mode exception will occur if the immediate or _ [Rn)(Rx) | © o
immediate quick addressing mode is specified for a disp[Rn/PCI(Rx) | © %
doubleword source operand. [disp[Rn/PC}}(Rx) (o] 0
/addr (Rx) o O
Condition Codes [/addr)(Rx) | © o
Immediate.Quick A X
cY oV Immediate A X
- - lllegal Addressing Mode 86-045
A Reserved Addressing Mode
CY Unchanged
oV Unchanged Exceptions
S Unchanged None
4 Unchanged
Instruction Format
Format |, Il
PRELIMINARY INFORMATION 7-54 1.0

MOVBS

containing the final bit of the source bit string while R27
contains the address of the byte containing the final bit
of the destination bit string.

Condition Codes
CY oV S V4

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format Vb

1.0

7-55

— Unavailable Addressing Mode

Exceptions
None

MOve Bit String MOVBS
Syntax * Instruction Opcode
movbsu bsrc.b.r, blen.b.r, bdst.b.w Move Bit String (Upward) 5B-08
movbsd bsrc.b.r, blen.b.r, bdst.b.w Move Bit String (Downward) 5B-09
Operation Addressing Modes
bdst « bsrc Addressing Mode bsrc | blen | bdst
Rn X (0} X
Description @[Rn] (0] - (o]
The source bit string is copied to the destination bit @[Rn+] o - o
string. Specifying the direction of the operation allows @[-Rn] o - o
the correct result to be computed when the two bit offset@[Rn/PC | 0 - 0
strings overlap. @[disp[Rn/PC]] (o) - 0
To minimize the interrupt latency time, the MOVBS offset@ disp[R0/PC]] | O - o
instruction allows the service of interrupts and faults @/addr (o] - o)
following the completion of a bus cycle. After servicing @[/addr] o - (o)
the interrupt or correction of the fault condition, Rx@[Rn] o - @)
instruction execution continues from the point of Rx@[Rn/PC] o - o)
interruption. Rx@[disp [Rn/PC]] (o] - 0
During the execution of the MOVBS instruction, Rx@/addr o - o
registers R28 and R27 contain pointers to the bytes Rx@[/addr] o - o
* within the source and destination bit strings to be Immediate.Quick X - X
processed next. Following the execution of the Immediate X (o] X
instruction, R28 contains the address of the byte lllegal Addressing Mode 86-052

PRELIMINARY INFORMATION

MOVC

Move Character M OVC
Syntax Instruction Opcode
movcu.b src.b.r, slen.b.r, dst.b.w, dlen.b.r Move Byte Character Upward 58-08
moved.b src.b.r, slen.b.r, dst.b.w, dlen.b.r Move Byte Character Downward 5809
movcu.h src.h.r, slen.b.r, dst.h.w, dlen.b.r Move Halfword Character Upward 5A-08
movcd.h src.hur, slen.b.r, dst.h.w, dlen.b.r Move Halfword Character Downward 5A+09
Operation Addressing Modes
dst « src Addressing Mode src | slen | dst | dlen
Rn X 0] X (0]
Description (Rnj o | -1o | -
The source character string is copied to the destination [Rn+] | O | -] O | -
character string. The source and destination length [-Rn] } O | -1 O | -
parameters indicate the number of characters to be disp[RnPC] | O [- | O | -
transferred rather than the number of bytes to be [disp [Rn/PC]] (o] - o -
transferred. dispi [disp2[RnPC]} | O | - | O | -
Character string transfers are initiated from the head of faddr | O | = | O | -
the strings in the address increment mode and from the [faddr] | O [= | O | -
tail end of the strings in the address decrement mode. [Rn)(Rx) | O | = | O | -
The number of characters copied is the minimum of the disp[RnPC)(Rx) | O | - | O | -
source and the destination string lengths. [disp[Rn/PC]J(Rx) o] - 0 -
This instruction is interruptable and resumable with faddr(Rx) | O | = | O | =
registers R28 and R27 used to maintain the source and [/addr}(Rx) | O [= | O | -
destination addresses respectively. Following the Immediate.Quick | X | - | X | -
execution of the MOVC instruction, these registers Immediate | X | O | X | O
contain the address of the next logical character to be X lllegal Addressing Mode 86-048
transferred. — Unavailable Addressing Mode
Condition Codes Exceptions
llegal Data Field
cY oV S Z
CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged
Instruction Format
Format Vlla
PRELIMINARY INFORMATION 7-56 1.0

MOVCF

MOVCF

Move Character with Filler

Syntax Instruction Opcode
movcfu.b src.b.r, slen.b.r, dst.b.w, dlen.b.r Move Byte Character with Filler Upward 58:0A
movcfd.b src.b.r, slen.b.r, dst.b.w, dlen.b.r Move Byte Character with Filler Downward 58-0B
movcfu.h src.h.r, slen.b.r, dst.h.w, dlen.b.r Move Halfword Character with Filler Upward SA0A
movcfd.h src.h.r, slen.b.r, dst.h.w, dlen.b.r Move Halfword Character with Filler Downward 5A«0B
Operation Addressing Modes

dst « src Addressing Mode src | slen | dst | dlen

Rn X O X o]

Description [Rr] | O - (o] -
The source character string is copied to the destination [Rn+] | O | = | O | -
character string. The shorter of the source and [-Rn] [O} - | O -
destination lengths determines the number of characters disp [Rn/PC] (o] - 0 -
to be transferred with any additional positions in the [disp [Rn/PC] (o] - 0o -
destination string filled using the fill character in R26. disp1 [disp2[Rn/PC]] | O - o -
Character string transfers are initiated from the head of faddr | O | = | O [-~
the strings in the address increment mode and from the [faddr] | O | - | O | -
tail end of the strings in the address decrement mode. [Rn}Rx) { O | = | O | -
This instruction is interruptable and resumable with disp[RVPCI(Rx) | © | - | O} -
registers R28 and R27 used to maintain the source and [disp[RWVPC]Rx) | O | - | O | -
destination addresses respectively. Following the faddr(Rx) | O [- | O | -
execution of the MOVCF instruction, these registers [faddr)(Rx) | O | = | O | -
contain the address of the next logical character to be Immediate.Quick | X - | X | -
transferred. Immediate X o] X 0

Condition Codes
CY ()Y S Z

CY Unchanged

OV Unchanged
S Unchanged
Z Unchanged
Instruction Format
Format Vila

1.0 7-57

X lllegal Addressing Mode
- Unavailable Addressing Mode

Exceptions
lllegal Data Field

PRELIMINARY INFORMATION

MOVCS

MOVCS

Move Character with Stopper
Syntax Instruction Opcode
moves.b src.b.r, slen.b.r, dst.b.w, dlen.b.r Move Byte Character with Stopper 580C
movcs.h src.h.r, slen.b.r, dst.h.w, dlen.b.r Move Halfword Character with Stopper 5A-0C
Operation Addressing Modes
dst « src Addressing Mode src | slen | dst | dlen
Rn X (o] X O
Description [Rn] 0] - o -
The source character string is copied to the destination [R+] [O | - | O | -
string until the end of the source or destination string is [RAn] O | -] 0| -
reached or the stop character specified by R26 is disp[Rn/PC] | O - 0] -
detected in the source string. The source and [disp[Rn/PC]]) | O© - o) -
destination length parameters indicate the number of disp1 [disp2[R/PC]] | © - o] -
characters to be transferred rather than the number of Jaddr | O - o -
bytes to be transferred. [faddr] | O - (o} -
This instruction is interruptable and resumable with [Rn)(Rx) | O - 10} -
registers R28 and R27 used to maintain the source and disp[Rn/PC)(Rx) | O | - | O | -
destination addresses respectively. Following the [disp [Rn/PC]1](Rx) o] - 0 -
execution of the MOVCS instruction, these registers /faddr (Rx) (0] - (o) -
contain the address of the next logical character to be [7addrJ(Rx) o - (o} -
transferred. Immediate.Quick X - X -
Immediate X o] X __]
Condition Codes X lllegal Addressing Mode 86-048
— Unavailable Addressing Mode
cYy oV S 4

* - - —

CY Cleared if the stop character is found, otherwise
set

Unchanged

S Unchanged

Z Unchanged

Instruction Format
Format Vlla

PRELIMINARY INFORMATION

7-58

Exceptions
lilegal Data Field

1.0

MOVEA

MOVEA

Move Effective Address
Syntax Instruction Opcode
movea.b src.b.n, dstw.w Move Byte Effective Address
movea.h src.h.n, dstw.w Move Halfword Effective Address
movea.w src.w.n, dstw.w Move Word Effective Address
Operation Addressing Modes
dst « effective_address(src) Addressing Mode src dst
Rn X o)
Description : [Rn] o e}
The effective address of the source operand is [Rn+] o o
transferred to the destination operand. The source [Rn] o) o
operand is not referenced and remains unchanged. disp[Rn/PC] o} 0
Separate instructions are provided for byte, halfword and ~ [dsp[Rn/PC]] o o
word operands to permit correct computation of effective disp1[disp2 [Rn/PC]] o o
addresses using the autoincrement, autodecrement and /addr o o
scaled index addressing modes. [/addr] (o) o
[Rn](Rx) o] o)
- disp [Rn/PC)(Rx) (0] e]
Condition Codes [disp [RVPC])(Rx) o o
cY (0} S y4 /addr (Rx) (o} (o)
- - - - [/addr }(Rx) o) o}
Immediate.Quick X X
CY Unchanged Immediate X X
B86-

OV Unchanged
S Unchanged
4 Unchanged

Instruction Format
Format |, I

1.0

7-59

llegal Addressing Mode

Exceptions
None

PRELIMINARY INFORMATION

MOVF

Move Floating M OV F
Syntax Instruction Opcode
movf.s src.s.r, dst.s.w Move Short Real 5C+08
movi.l src.lr, dst.lw Move Long Real S5E-08
Operation Addressing Modes
dst « src Addressing Mode src dst
Rn O (o}
Description [Rn] (o] o]
The source operand is copied to the destination [Rn+] o o
operand and the flags updated to reflect the state of the [-Rn] o o
destination. disp [Rn/PC] 0 0
[disp[Rn/PC 1] (o} 0]
Condition Codes disp1 [disp2 [Rn/PC]] o o
/addr 0] (0]
cy OV S Z [/addr] | © o
* 0 * * [Rn}Rx) | © o
disp [Rn/PC }(Rx) o o}
CY Set if the destination is negative and non-zero, [disp [Rn/PC])(Rx) o) o
otherwise cleared
/addr (Rx) 0 0]
OV Cleared
S Set if the destination mantissa sign bit is set, [/addr}(Rx) | O o
otherwise cleared Immediate.Quick A X
z Set if the destination is zero, otherwise cleared Immediate A X
lllegal Addressing Mode 86-04
FIV FZD FOV FUD FPR A Hegerved Addresgsing Mode
* - - * -_
Exceptions
FIV Setif the destination is a NaN or infinite, Reserved Floating Point Operand
otherwise unchanged Floating Point Underflow
FZD Unchanged g
FOV Unchanged
FUD Set if the destination is denormal, otherwise
unchanged
FPR Unchanged
Instruction Format
Format li

PRELIMINARY INFORMATION

7-60

1.0

M OVS Move Sign Extended M OVS
Syntax Instruction Opcode
movs.bh src.b.r, dst.h.w Move Sign Extended Byte to Halfword 0A
movs.bw src.b.r, dstw.w Move Sign Extended Byte to Word oc
movs.hw src.h.r, dstw.w Move Sign Extended Halfword to Word 1C
Operation Addressing Modes

dst « sign_extend(src) Addressing Mode src dst
Rn (o] o)
Description [Rn] o o
The contents of the source operand are sign extended [Rn+] o o
to the destination length and copied to the destination [-Rn] o o
operand. disp [Rn/PC] 0 0
The source and destination operand lengths ditfer in this ~ [dsp[RnPC]) | O o
instruction. When specified, the autoincrement, disp1[disp2[Rn/PC]] | O 0
autodecrement and scaled index addressing modes are /addr o o
independently calculated for each operand. [/addr] o o
When the immediate quick addressing mode is specified) [Rn](Rx) ° o
for the source operand, the immediata data is zero f"sf’[Rn/PC](Rx) o o
extended to the source operand length before being [disp[Rn/PCII(Rx) | O ©
sign extended to the destination operand length. /faddr(Rx) | O o
[/addr J(Rx) o} O
Condition Codes Immediate.Quick o] X
Immediate (6] X
4 ov S Z X Tilegal Addressing Mode 85-046
Exceptions
CY Unchanged None
OV Unchanged
S Unchanged
z Unchanged
Instruction Format
Format |, Il

1.0

7-61

PRELIMINARY INFORMATION

MOVT

Move Truncated M OVT
Syntax Instruction Opcode
movt.hb src.h.r, dst.b.w Move Truncated Halfword to Byte 19
movt.wb srcw.r, dst.b.w Move Truncated Word to Byte 29
movtwh srcw.r, dst.h.w Move Truncated Word to Halfword 2B
Operation Addressing Modes
dst « truncate(src) Addressing Mode src dst
Rn (o} o
Description [Rn] (o] o
The contents of the source operand are truncated to the [Rn+] o o
destination operand length and copied to the [-Rn] o o
destination operand. If any of the truncated bits do not disp [Rn/PC] (o] (0]
match the sign of the result, an integer overflow has [disp[Rn/PC] o} 0
occurred and the OV flag is set. In the event of an disp1 [disp2[Rn/PC] (o) 0
overflow, the destination operand is replaced with the faddr (0] 0
low order bits of the true result. [/addr] (o] 0
The source and destination operand lengths differ in this [Rn](Rx) o o
instruction. When specified, the autoincrement, disp [Rn/PC }(Rx) o %)
autodecrement and indexed addressing modes are [disp [Rn/PC]](Rx) (0] 0
independently calculated for each operand. /addr (Rx) o] 0
[/addr }(Rx) 0] 0]
Condition Codes Immediate.Quick o} X
Immediate 0} X
oY ov S Z X lliegal Addressing Mode 86-046
- * —_— -
Exceptions
None
CY Unchanged
OV Set if integer overflow occurs, otherwise cleared
S Unchanged
Z Unchanged
Instruction Format
Format |, I
PRELIMINARY INFORMATION 7-62 1.0

M O VZ Move Zero Extended , M OVZ

Syntax Instruction Opcode
movz.bh src.b.r, dst.hw Move Zero Extended Byte to Halfword 0B
movz.bw src.b.r, dstw.w Move Zero Extended Byte to Word oD
movz.hw src.h.r, dstw.w Move Zero Extended Halfword to Word 1D
Operation Addressing Modes
dst « zero_extend(src) Addressing Mode src dst
Rn 0] 0]
Description [Rn] o] 0
The contents of the source operand are zero extended [Rn+] o o
and copied to the destination operand. [-Rn] (0] 0
The source and destination operand lengths differ in this disp[Rn/PC] | O o
instruction. When specified, the autoincrement, ~ [dsp[RnPC]] | O o
autodecrement and scaled index addressing modes are disp1[disp2[Rn/PC]] | © o
independently calculated for each operand. faddr o o
When the immediate quick addressing mode is specified [/addr] O 0
for the source operand, the immediate data is zero _ [Rn](Rx) | O o
extended to the destination operand length. disp[Rn/PC](Rx) | O o
[disp [Rn/PC]1](Rx) (o} (@)
Condition Codes faddr (Rx) | O | O
[/addr](Rx) (o} O
cY oV S z Immediate.Quick o) X
- - - - Immediate O X
lllegal Addressing Mode 86-046
CY Unchanged
OV Unchanged .
S Unchanged Exceptions
Z Unchanged None
Instruction Format
Format |, Il

1.0 7-63 PRELIMINARY INFORMATION

MUL

Signed Multiply M U L

Syntax Instruction Opcode
mul.b src.b.r, dst.b.rw Mutltiply Byte 81
mul.h src.h.r, dst.h.rw Multiply Halfword 83
mul.w src.w.r, dst.w.rw Muttiply Word 85

Operation Addressing Modes

dst « dst *src Addressing Mode src dst

Rn o 0]

Description [Rn] (0] o

The product of the source and destination operands is [Rn+] o o

stored in the destination operand. An overflow occurs [-Rn] o o

when the double length intermediate product does fit disp [Rn/PC] o o

within the precision of the destination operand. [disp[Rn/PC] (0] o}

If the immediate quick addressing mode is specified for disp1 [disp2[Rn/PC]] | O o

the source operand, the immediate data is zero /addr o o

extended to the source operand length before [/addr] o o

performing the operation. [Rn](Rx) o o

disp [Rn/PC)(Rx) 0] (0]

Condition Codes [disp[RnPC])(Rx) | O o

/addr (Rx) o] 0]

cY oV [/addr}(Rx) | O o]

- * Immediate.Quick o) X

Immediate O X

CY Unchanged MMegal Addressing Mode 56046

OV Setif integer overflow occurs, otherwise cleared
Set if the result is negative, otherwise cleared
Z Set if the result is zero, otherwise cleared

Instruction Format
Format |, I

PRELIMINARY INFORMATION

7-64

Exceptions
None

1.0

MULF

MULF

Multiply Floating
Syntax Instruction Opcode
mulf.s src.s.r, dst.s.rw Multiply Short Real 5C+1A
mulf.l src.l.r, dst.l.iw Multiply Long Real 5E«1A
Operation Addressing Modes
dst « src *dst Addressing Mode src dst
Rn o 0]
Description [Rn] o) 0o
The product of the source operand and destination [Rn+] o o
operand is stored in the destination operand. Both the {-Rn] o) 0
integer and floating point condition codes are updated to disp [Rn/PC] 0 0
reflect the result of the operation. {disp[RVPC 1] o] (o)
If either of the operands is zero and the other operand is disp1[disp2[Rn/PC]] | O o
either zero or normal, the result is zero with the sign faddr o @)
determined by the exclusive OR of the source and [/addr] o o
destination signs. [Rn](Rx) o} (o]
disp [Rn/PC J(Rx) 0] O
Condition Codes [disp[Rn/PC])(Rx) | O o
/addr (Rx) o o}
Ccy oV _ S z [/faddr)(Rx) | © o
* 0 * * Immediate.Quick | A X
Immediate A X

CY Setif the result is negative and non-zero,
otherwise cleared
OV Cleared
S Set if the mantissa sign bit of the result is set,
otherwise cleared
Z Set if the result is zero, otherwise cleared

FIV FZD FOV___FUD _FPR

* - * * *

FIV Setif aninvalid operation is attempted,
otherwise unchanged

FZD Unchanged

FOV Set if the result is infinite, otherwise unchanged

FUD Set if the result is denormal, otherwise

unchanged
FPR Set if a precision error occurs, otherwise
unchanged
Instruction Format
Format |l

1.0

7-65

X lllegal Addressing Mode
A Reserved Addressing Mode

Exceptions

Reserved Floating Point Operand
Floating Point Overflow

_Floating Point Underflow

Floating Point Precision

86-045

PRELIMINARY INFORMATION

MULU

Unsigned Multiply M U LU
Syntax Instruction Opcode
mulu.b src.b.r, dst.b.rw Multiply Unsigned Byte 91
mulu.h src.h.r, dst.h.rw Multiply Unsigned Halfword 93
mulu.w src.w.r, dstw.iw Multiply Unsigned Word 95
Operation Addressing Modes
dst « dst*src (unsigned) Addressing Mode src dst
Rn 0] O
Description [Rn] (0] 0]
The product of the unsigned source and destination [Rn+] o o
operands is stored in the destination operand. An [-Rn] o o
overflow occurs when the product cannot fit within the disp [Rn/PC] 0 0
precision of the destination operand. [disp[Rn/PC]] 0 o}
If the immediate quick addressing mode is specified for disp1 [disp2 [Rn/PC]] o o
the source operand, the immediate data is zero /addr o o
extended to the source operand length before [/addr]) o
performing the operation. [Rn](Rx) (o] 0
disp [Rn/PC](Rx) o o)
Condition Codes [disp[Rn/PC]](Rx) o o
/addr (Rx) O 0]
cY ov {/addr)(Rx) o O
- * Immediate.Quick o} X
Immediate o) X
cY UnC_h{inged . X Tiegal Addressing Mode 86-046
OV Setif integer overflow occurs, otherwise cleared
S Set if the MSB of the result is set, otherwise
cleared Exceptions
Z Setif the result is zero, otherwise cleared None
Instruction Format
Format I, I
PRELIMINARY INFORMATION 7-66 1.0

MULX

MULX

Multiply Extended
Syntax Instruction Opcode
mulx src.w.r, dst.d.rw Multiply Extended Word 86
Operation Addressing Modes
dst « dst*src Addressing Mode src dst
Rn (o} (0]
Description [Rn] o] o
The word designated by the destination operand is [Rn+] o o
multiplied by the word contents of the source operand. [Rn] o o
The resulting doubleword product is stored in disp [Rn/PC] (0] (0]
destination operand. [disp[Rn/PC]] o (o]
If the immediate quick addressing mode is specified for disp1[disp2[Rn/PC]] | © o
the source operand, the immediate data is zero /addr o o
extended to the source operand length before [/addr] o o
performing the operation. [Rn])(Rx) o} (o]
disp [Rn/PC]J(Rx) (o} (@]
Condition Codes [disp[RVPC])(Rx) | O o
. /addr (Rx) o 0]
cy ov S Z [/addr}(Rx) | © 0
- 0 * * Immediate.Quick o X
oY Unch g Immediate (0] X
nchange - —s503e
OV Cleared lilegal Addressing Mode 046
S Set if the result is negative, otherwise cleared

Set if the result is zero, otherwise cleared

Instruction Format

1.0

Format |, {l

7-67

Exceptions

PRELIMINARY INFORMATION

MULUX

Unsigned Multiply Extended M U LU X
Syntax Instruction Opcode
mulux src.w.r, dst.d.rw Multiply Extended Unsigned Word
Operation Addressing Modes
dst « dst*src (unsigned) Addressing Mode src dst
Rn (o} O
Description [Rn] o] o]
The unsigned word contents of the destination operand [Rn+] o o
is multiply by the unsigned word contents of the source [-Rn] o o
operand. The resulting doubleword product is stored in disp [Rn/PC] (o] o)
the destination. [disp [Rn/PC 1] 0 0
If the immediate quick addressing mode is specified for disp1 [disp2[Rn/PC]] | O o
the source operand, the immediate data is zero /addr o o
extended to the source operand length before [/addr] o o
performing the operation. [Rn)(Rx) 0 (0]
disp[R/PC)(Rx) | © o
Condition Codes [disp [Rn/PC])(Rx) o o
/addr (Rx) (o} o)
cy OV _ S z [/addr}(Rx) | © o
- 0 * * Immediate.Quick o) X
Immediate (o} X
CY Unchanged illegal Addressing Mode 86-046
OV Cleared
S Set if the MSB of the result is set, otherwise

cleared
4 Set if the result is zero, otherwise cleared

Instruction Fon‘ﬁat
Format |, Il

PRELIMINARY INFORMATION

7-68

Exceptions
None

1.0

N EG Negate N EG
Syntax Instruction Opcode
neg.b src.b.r, dst.b.w Negate Byte
neg.h src.h.r, dst.h.w . Negate Halfword
neg.w sre.w.r, dstw.w Negate Word
Operation Addressing Modes

dst « 0-src Addressing Mode src dst
Rn 0] o]
Description [Rn] o 0
The two's complement of the source operand is stored in [Rn+] o o
the destination operand. [-Rn] (o] o)
Integer overflow will occur if the source operand is the disp[RnPC] | O 0
largest negative integer which has no counterpart in the ~ [dsp[RnPC]] | O o
two's complement number system. On overflow, the disp1[disp2[Rn/PC]] | O %
source operand is copied to the destination operand. /addr o o
If the immediate quick addressing mode is specified for [/addr] 0 0
the source operand, the immediate data is zero) [Rn]J(Rx) o o
extended to the source operand length before disp[Rn/PCY(Rx) | O %
performing the operation. [disp [R/PC])(Rx) o o
/addr (Rx) (o} 0
Condition Codes [/addr)(Rx) | O o
immediate.Quick O X
CcY ov Immediate O X

* * Illegal Addressing Mode 86046

CY Set if the result is non-zero, otherwise cleared
OV Set if integer overflow occurs, otherwise cleared
Set if the result is negative, otherwise cleared

Set if the result is zero, otherwise cleared

Instruction Format
Format |, Il

1.0

7-69

Exceptions
None

PRELIMINARY INFORMATION

NEGF

Negate Floating N EG F
Syntax Instruction Opcode
negf.s src.s.r, dst.s.w Negate Short Real 5C+09
negt.l src.l.r, dst.l.w Negate Long Real S5E+«09
Operation Addressing Modes
dst « —src Addressing Mode src dst
Rn (o] O
Description [Rn] (o] (o)
The negation of the source operand is stored in the [Rn+] o o
destination operand. Both the integer and floating point [-Rn] @ 0
condition codes are updated to reflect the result of the disp [Rn/PC] (0] o
operation. [disp [Rn/PC]] (o} o)
disp1 [disp2 [Rn/PC]] o] o
Condition Codes /addr o o
oy o [/addr] o} o}
L - z [R)Rx) | © o
* 0 * * disp[RPC)(Rx) | © o
[disp [Rn/PC]}(Rx) o} o}
CY Setif the result is negative and non-zero, /addr (Rx) o o
otherwise cleared
OV Cleared [faddr)(Rx) | O | O
S Setif the mantissa sign bit of the result is set, Immediate.Quick | A X
otherwise cleared Immediate A X
Z Setif the result is zero, otherwise cleared X Tiegal Addressing Mode 86045
A Reserved Addressing Mode
Fiv FzZD FOV FUD FPR
* - S - Exceptions
o o Reserved Floating Point Operand
FIV Setif an invalid operation is attempted, Floating Point Underflow
otherwise unchanged
FZD Unchanged
FOV Unchanged
FUD Set if the result is denormal, otherwise
unchanged
FPR Unchanged
Instruction Format
Format I

PRELIMINARY INFORMATION

7-70

1.0

N O P No Operation | N 0 P

Syntax Instruction Opcode
nop No Operation CcD
Operation

PC « PC+1
Description

No action is taken. The NOP instruction can be used to
secure a place in the code stream or to create a program
delay.

Condition Codes
cY (o)) S Z

CY Unchanged
OV Unchanged
S Unchanged
Y4 Unchanged

Instruction Format
Format V

Exceptions
None

1.0 7-71 PRELIMINARY INFORMATION

NOT

One's Complement N OT

Syntax Instruction Opcode
not.b src.b.r, dst.b.w One's Complement Byte 38
not.h src.h.r, dst.h.w One's Complement Halfword 3A
not.w src.w.r, dstw.w One's Complement Word 3C
Operation Addressing Modes
dst « ~src Addressing Mode sre dst
Rn (0] (0]
Description [Rn] o (o)
The one's complement of the source operand is stored [Rn+] o o
in the destination operand. [-Rn] o o
If the immediate quick addressing mode is specified for f"sP [Rn/PC] 0 0
the source operand, the immediate data is zero ~ [dsp[RPC]] | O o
extended to the source operand length before disp1[disp2[Rn/PC]] | © 0
performing the operation. /addr | O %
[/addr] (o} o
Condition Codes [Rnl(Rx) | © o
disp [Rn/PC]J(Rx) o 0
cY OV [disp[RnPC]}(Rx) | © o
- 0 faddr (Rx) o} o}
[/addr](Rx) o o |
8:// glnchacr;ged Immediate.Quick (0] X
eare .
S Setif the MSB of the result is set, otherwise Immediate °):s.er

cleared

lllegal Addressing Mode

Z Set if the result is zero, otherwise cleared

Instruction Format
Format I, Il

PRELIMINARY INFORMATION

Exceptions
None

7-72 1.0

NOT1

Complement Bit NOT1

Syntax Instruction Opcode
not1 offset.w.r, base.w.rw Bit Test and Complement
Operation Addressing Modes

CY « bit(base, offset) Addressing Mode offset base

Z « ~bit(base, offset) Rn Fo) o |

bit(base, offset) « ~bit(base, offset) [Rn] o o

[Rn+] o) o)

Description [-Rn] o} o
The bit located at the sum of the byte base address and disp[Rn/PC] o o
bit offset is tested and then complemented. The CY and [disp[Rn/PC]] 0 (o)
Z flags reflect the state of the bit prior to the execution of disp1 [disp2 [Rn/PC 1] o 0
the instruction. faddr o o]
The location of the designated bit is decided by the base [/addr] o o
operand. If the register addressing mode is used for the [Rn](Rx) o o
base operand, the designated bit is located within a disp [Rn/PC J(Rx) o e
general purpose register at the specified bit offset. For [disp[Rn/PC])(Rx) o 0
any other addressing mode, the designated bit is at the /addr (Rx) o] (o]
specified bit offset from the base address. An lllegal Data [/addr}(Rx) (o} o}
Field exception occurs if the bit offset is outside the Immediate.Quick o} X
range 0 to 31. Immediate 0 X

if the autoincrement or autodecrement addressing mode
is specified for the base operand, the base operand is
treated as word data and is incremented or decremented
by four. When the immediate quick addressing mode is
specified, the immediate data is zero extended to word
length and used as the bit offset.

Condition Codes
CY Qv S

* - - *

CY Setif the designated bit is 1, otherwise cleared
OV Unchanged

S Unchanged

Z Set if the designated bit is 0, otherwise cleared

Instruction Format
Format |, 1l

1.0

7-73

lllegal Addressing Mode

Exceptions
llegal Data Field

86-095

PRELIMINARY INFORMATION

NOTBS

Negate Bit String N OTB S
Syntax Instruction Opcode
notbsu bsrc.b.r, blen.b.r, bdst.b.w Negate Bit String (Upward) 5B+<0A
notbsd bsrc.b.r, blen.b.r, bdst.b.w Negate Bit String (Downward) 5B-0B
Operation Addressing Modes
bdst « ~bsrc Addressing Mode bsrc | blen bdst

Rn X (o} X
Description @[Rn] (o] - 0
The complement of the source bit string is stored in the @[Rn+] o - o
destination bit string. Specifying the direction of the @[-Rn] o - o
operation allows the correct result to be computed when offset@[Rn/PC] 0 - 0
bit strings overlap. @[disp[Rn/PC 1] 0 - 0
To minimize the interrupt latency time, the ANDBS offset@] disp [Rn/PC]] o - o
instruction allows the service of interrupts and faults @/addr o - o)
following the completion of a bus cycle. After servicing @[/addr] o - o
the interrupt or correction of the fault condition, Rx@[Rn] o - o
instruction execution continues from the point of Rx@[Rn/PC] o - o
interruption. Rx@][disp [Rn/PC]] o - o]
During the execution of the NOTBS instruction, registers Rx@/addr | O - o
R28 and R27 contain pointers to the bytes within the Rx@][/addr] o - o
source and destination bit strings to be processed next. Immediate.Quick X - X
Following the execution of the instruction, R28 contains Immediate X o X

the address of the byte containing the final bit of the
source bit string while R27 contains the address of the
byte containing the final bit of the destination bit string.

Condition Codes
CcY oV S Z

CY Unchanged
OV Unchanged
S Unchanged
4 Unchanged

Instruction Format
Format Vilb

PRELIMINARY INFORMATION

7-74

lllegal Addressing Mode
— Unavailable Addressing Mode

Exceptions
None

86-052

1.0

OR

OR

Logical OR
Syntax instruction Opcode
or.b src.b.r, dst.b.rw OR Byte - 88
or.h src.h.r, dst.h.rw OR Halfword 8A
or.w src.w.r, dst.w.rw OR Word 8C
Operation Addressing Modes
dst « dstvsrc Addressing Mode src dst
Rn (o] 0]
Description [Rn] | © o)
The bit-wise OR of the source and destination operands [Rn+] o o
is stored in the destination operand. [-Rn] o o
If the immediate quick addressing mode is specified for disp[RnPC] | O %
the source operand, the immediate data is zero ~ [dsp[RnPC]] | O o
extended to the source operand length before disp1 [disp2 [Rn/PC]] o o
performing the operation. faddr o o
[faddr] | © o)
Condition Codes [Rn)(Rx) 0 o
disp[Rn/PC)(Rx) | © o)
cy oV [disp[RPC])(Rx) | © o
- 0 /addr (Rx) | O o
[/addr }(Rx) 0] 0]
g\Y/ g{‘Chagged Immediate.Quick 0 X
eare)
S Setif the MSB of the result is set, otherwise _ Immediate | © X
lllegal Addressing Mode 86-046

cleared

4 Set if the result is zero, otherwise cleared

Instruction Format
Format i, Ii

1.0

7-75

Exceptions
None

PRELIMINARY INFORMATION

ORBS

ORBS

OR Bit String
Syntax Instruction Opcode
orbsu bsrc.b.r, blen.b.r, bdst.b.rw OR Bit String (Upward) 5B-14
orbsd bsrc.b.r, blen.b.r, bdst.b.rw OR Bit String (Downward) 5B+15
Operation Addressing Modes
bdst « bsrc v bdst Addressing Mode bsrc | blen | bdst
Rn X (0] X
Description _ @[Rn] (o] - 0
The bit-wise OR of the source and destination bit strings @[Rn+] o - o
is stored in the destination bit string. Specifying the @[-Rn] o - o
direction of the operation allows the correct result to be offset@[Rn/PC o - o
computed when bit strings overlap. @[disp[Rn/PC1]] 0 - (o]
To minimize the interrupt latency time, the ORBS offset@ disp[Rn/PC]] | O - o
instruction allows the service of interrupts and faults @’/addr o - o
following the completion of a bus cycle. After servicing @[/addr] o - o
the interrupt or correction of the fault condition, Rx@[Rn} o - o
instruction execution continues from the point of Rx@[Rn/PC] o - o
interruption. Rx@[disp [Rn/PC]] o] - 0
During the execution of the ORBS instruction, registers Rx@/addr | O - o
R28 and R27 contain pointers to the bytes within the Rx@][/addr] o - o
source and destination bit strings to be processed next. Immediate.Quick X - X
Following the execution of the instruction, R28 contains Immediate X o X
the address of the byte containing the final bit of the MMegal Addressing Mode 86052
source bit string while R27 contains the address of the ~ — Unavailable Addressing Mode
byte containing the final bit of the destination bit string.
Instruction Exceptions
Condition Codes None
cY oV S y4
CY Unchanged
OV Unchanged
S Unchanged
4 Unchanged
instruction Format
Format Vilb
PRELIMINARY INFORMATION 7-76 1.0

0 R N BS OR Complemented Bit String 0 R N BS
Syntax Instruction Opcode
ornbsu bsrc.b.r, blen.b.r, bdst.b.rw OR Complemented Bit String (Upward) 5B+16
ornbsd bsrc.b.r, blen.b.r, bdst.b.rw OR Complemented Bit String (Downward) 5B+17
Operation ; Addressing Modes

bdst « ~bsrc v bdst Addressing Mode bsrc | blen bdst
Rn X (0] X
Description @[Rn] o - o]
The bit-wise OR of the complemented source bit string @[Rn+] o - o
and the destination bit string is stored in the destination @[-Rn] o - o
bit string. Specifying the direction of the operation offset@[Rn/PC] (o] - 0
allows the correct result to be computed when bit strings @[disp[Rn/PC1] o] - 0
overlap. offset@][disp [Rn/PC]] (o] - 0
To minimize the interrupt latency time, the ORNBS @/addr o - o
instruction allows the service of interrupts and faults @[/addr] o - o
following the completion of a bus cycle. Aftér servicing Rx@[Rn] o - o
the interrupt or correction of the fault condition, Rx@[Rn/PC] 0 - (@)
instruction execution continues from the point of Rx@[disp [Rn/PC]] (o] - (o]
interruption. Rx@/addr (o] - (0]
During the execution of the ORNBS instruction, Rx@[/addr] o - o
registers R28 and R27 contain pointers to the bytes Immediate.Quick X - X
within the source and destination bit strings to be Immediate X o X
processed next. Following the execution of the llegal Addressing Mode 88052

instruction, R28 contains the address of the byte
containing the final bit of the source bit string while R27
contains the address of the byte containing the final bit
of the destination bit string.

Condition Codes
CY QV S Z

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format Vlib

1.0 7-77

— Unavailable Addressing Mode

Exceptions
None

PRELIMINARY INFORMATION

OouT

Output 0 U T
Syntax Instruction Opcode
out.b src.b.r, portbw Output Byte 21
out.h src.h.r, port.h.w Output Halfword 23
out.w src.w.r, port.w.w Output Word 25
Operation Addressing Modes
port « src Addressing Mode src port
Rn (o} X
Description [Rn] o] o
The source operand is copied to output port. [Rn+] (o) 0
[Rn] O (0]
Condition Codes disp(Rn/PC] | O O
[disp[Rn/PC]] o} o}
cy OV S Z dispt [disp2[Rn/PC]] | © o
- - ~ ~ faddr (o} O
[/addr] 0] o
CY Unchanged [Rn](Rx) (o] (o]
OSV Hgggggggg disp[RVPCY(Rx) | © 0
Z Unchanged [disp[Rn/PC](Rx) | © o}
faddr (Rx) (o] o
. [/addr }(Rx) o))
Instruction Format Immediate.Quick | O X
Format i, il Immediate O X

PRELIMINARY INFORMATION

7-78

X Tlegal Addressing Mode

Exceptions
Privileged Instruction

86-082

1.0

PO P Pop Word

POP

Syntax Instruction Opcode
pop dst.w.w Pop Word E6/7
Operation Addressing Modes
dst « [SP+] Addressing Mode dst
Rn O
Description [Rn] (o]
The word data located on the top of the stack is copied to [Rn+] o
the destination operand. The stack pointer (R31) is then [Rn] o
incremented by four. disp [Rn/PC] o]
The POP instruction is a shorter encoding of the more [disp[Rn/PC] o
general instruction disp1 [disp2 [Rn/PC]] o
/addr o
mov.
ov.W [sp+], dst [/addr] o
o [Rn]}(Rx) o
Condition Codes disp [Rn/PC)(Rx) o
cY ov s z [disp [Rn/PC 1 }(Rx) o)
- - - - /addr (Rx) (@)
[/addr J(Rx) o
CY Unchanged Immediate.Quick X
OV Unchanged Immediate X
S Unchanged Megal Addressing Mode 88056
Z Unchanged
Instruction F : Exceptions
n ion Forma None
Format Il

1.0 7-79

PRELIMINARY INFORMATION

POPM

POPM

Pop Multiple
Syntax Instruction Opcode
popm list.w.r Pop Multiple Registers E4/5
Operation Addressing Modes
registers « [SP+] Addressing Mode list
Rn (o]
Description [(Rn] o
This instruction permits a programmer to pop from 1 to 32 [Rn+] o
registers from the stack with a single instruction. A [-Rn] 0
register will be restored if and only if its corresponding bit disp [Rn/PC] o)
in the register list is set. [disp[Rn/PC]] 0
disp1 [disp2 [Rn/PC] o)
PIRIRIRIR]R'R!R'liiklnIRIRIRIRIRlRlRIRIRIRIR|R|R|RIR'R|R|R'RIR|R /addr 0
§53222222222211111111119876543210
W098765432109876543210 [/addr] O
86-074 [Rn](Rx) 0
disp [Rn/PC }(Rx) (0]
The register list is searched sequentially from the LSB [disp [RVPC])(Rx) o
(RO) to the MSB (PSW) with only the designated /addr (Rx) o
registers being restored from the stack. If the PSW [/addr }(Rx) o |
register is specified, only the lower halfword is modified. Immediate.Quick 0
The register list is extended to word length if the Immediate o)
immediate quick addressing mode is specified. 057
Condition Codes Exceptions
cY ov s z None
R R R R
CY Restored if list:31 is set, otherwise unchanged
OV Restored if list:31 is set, otherwise unchanged
Restored if list:31 is set, otherwise unchanged
Z Restored if list:31 is set, otherwise unchanged
Instruction Format
Format Il
PRELIMINARY INFORMATION 7-80 1.0

PREPARE

PREPARE

Prepare Stack Frame
Syntax Instruction Opcode
prepare numw.r Prepare Stack Frame DE/F
Operation Address Modes
tmp « num Addressing Mode num
[-SP] « FP
FP < SP e
SP « SP-tmp “lqnﬂ} °
+
‘o [-Rn] o
Description disp[RPC] | ©
This instruction is used to dynamically generate a new [disp [RVPC]] 0o
stack frame upon entry into a procedure. First, the disp1 [disp2 [Rn/PC]] o
contents of the frame pointer (R30) are saved on the /addr o
stack and the updated SP is copied into the FP register. [/addr] o
Finally, the stack pointer is adjusted by the specified [Rn](Rx) o
number of bytes to allocate storage for local variables for disp [Rn/PC](Rx) o
this instance of the procedure. [disp [RN/PC] J(Bx) o
/addr (Rx) O
Condition Codes [/addr J(Rx) 0
oY oV Immediate.Quick o}
~ _ Immediate O

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format Hli

1.0

Exceptions
None

7-81

86-072

PRELIMINARY INFORMATION

PUSH Push Word PUSH
Syntax Instruction Opcode
push sSrcw.r Push Word EE/F
Operation Addressing Modes

[-SP] « src Addressing Mode src
Rn o)
Description [Rn] (o]
The stack pointer (R31) is decremented by four and the [Rn+] o
contents of the source operand are copied onto the [-Rn] o
stack. disp [Rn/PC] O
The PUSH instruction is a shorter encoding of the more ~ ldisp[Rn/PC]] | O
general instruction disp1 [disp2 [Rn/PC]] o)
mov.w src, [-sp] faddr ©
' ' [/addr) o}
- [Rn](Rx) (0]
Condition Codes disp [Rn/PC J(Rx) o
cY oV [disp[Rn/PC])(Rx) 0]
— - /addr (Rx) O

[/addr](Rx) o
CY Unchanged Immediate.Quick O
OV Unchanged Immediate 0

S Unchanged

Z Unchanged

Instruction Format
Format Il

PRELIMINARY INFORMATION

7-82

Exceptions
None

86-057

1.0

PUSHM Push Multiple PUSHM
Syntax ~ Instruction Opcode
pushm list.w.r Push Multiple Registers EC/D
Operation Addressing Modes

[-SP] « registers Addressing Mode list

Rn O

Description [Rn] o

This instruction permits the programmer to push from 1 [Rn+] o

to 32 registers on to the stack with a single instruction. A [Rn] 0

register (PSW, Rn) will be saved if the corresponding bit disp[Rn/PC] 0

in the register list is set. [disp[Rn/PC]) 0

disp1 [disp2 [R/PC]] o)

PIRIR'RIRIR'R}RIRlRIR[RIR]RIRIRIR'RIRIRIRIR]R'RIRIR|R[R]R'R|R|R /addr O

§3222222222211111111119876543210

WO098765432109876543210 [/addr] 0O

86-074 [Rn](Rx) o)

: disp [Rn/PC }(Rx) 0

The register list is searched sequentially from the MSB [disp [R/PC])(Rx) o

(PSW) to the LSB (R0) with only the designated registers /addr (Rx) o

being pushed onto the stack. The SP (R31) is not saved [/addr }(Rx) o

and following the execution of the instruction points to Immediate.Quick o

the last register pushed on the stack. Immediate o
The register list is extended to zero word length if the

immediate quick addressing mode is specified.

Condition Codes
CcY oV S y4

CY Unchanged
OV Unchanged
S Unchanged
4 Unchanged

Instruction Format
Format Ill

1.0

7-83

B6-087

Exceptions
None

PRELIMINARY INFORMATION

REM

Remainder REM

Syntax instruction Opcode
rem.b srch.r, dstb.rw Remainder Byte 50
rem.h sfc.h.r, dst.h.rw Remainder Halfword 52
rem.w src.w.r, dstw.iw Remainder Word 54

Operation Addressing Modes

dst « dst % src Addressing Mode src dst

Rn (o} o

Description [Rn] (o] (o]

The integer remainder of the destination operand [Rn+] o o

(dividend) divided by the source operand (divisor) is [-Rn] o o

stored in the destination operand. The sign of the disp [Rn/PC] (0] (o]

remainder is the same as the sign of the dividend. [disp [Rn/PC]] (0] (o]

The destination operand remains unchanged when a disp1[disp2[Rn/PC]] | © o

Zero Divide exception occurs. /addr o o

If the immediate quick addressing mode is specified for [/addr] 0 O

the source operand, the immediate data is zero) [RnJ(Rx) 0 0

extended to the source operand length before disp[RR/PCL(Rx) | O 0

performing the operation. [disp[RnPCT}(Rx) | O o

/addr (Rx) o} (0]

Condition Codes [faddr}(Rx) | O o

Immaediate.Quick 0] X

cYy ov S r4 Immediate @) X

- 0 * * X Tilegal Addressing Mode 86046

CY Unchanged

OV Cleared
S Setif the result is negative, otherwise cleared
Z Set if the result is zero, otherwise cleared
Instruction Format
Format |, Il
PRELIMINARY INFORMATION

7-84

Exceptions
Zero Divide

1.0

R E M U Unsigned Remainder

REMU

V4 Set if the result is zero, otherwise cleared

Instruction Format
Format |, Il

1.0 7-85

: Syntax ‘ Instruction Opcode
remu.b src.b.r, dst.b.rw Unsigned Remainder Byte 51
remu.h src.h.r, dst.h.rw Unsigned Remainder Halfword 53
remu.w src.w.r, dst.w.rw Unsigned Remainder Word 55
Operation Addressing Modes

dst « dst % src(unsigned) Addressing Mode sre dst
Rn (o) O
Description [Rn] o o
The remainder of the destination operand (dividend) [Rn+] o o
divided by the source operand (divisor) is stored in the [-Rn] o o
destination operand. All operands are treated as disp [Rn/PC] (o] 0
unsigned data, however, the condition code flags are set [disp[Rn/PC]] 0 0
as if the remainder is a signed value. disp1 [disp2 [Rn/PC]] (0] (o]
The destination operand remains unchanged when a faddr o o
Zero Divide exception occurs. { /addr] (o] 0
If the immediate quick addressing mode is specified for - [RakRx) O 0
the source operand, the immediate data is zero disp[Rn/PC](Rx) | O o
extended to the source operand length before [disp[Rn/PC])(Rx) o 0
performing the operation. /addr (Rx) o o
[/addrJ(Rx) (o} 0]
Condition Codes Immediate.Quick (o] X
Immediate 0 X
cY ov s Z lllegal Addressing Mode 'B6-026
- 0 * *
oY Unch d Exceptions
nchange .
OV Cleared Zero Divide
S Setif the MSB of the result is set, otherwise
cleared

PRELIMINARY INFORMATION

R ET Return from Procedure R ET
Syntax Instruction Opcode
ret num.w.h Return from Procedure E2/3
Operation Addressing Modes

tmp1 « num Addressing Mode num
tmp2 « [SP+]
AP « [SP+] RRn 8
SP « SP +tmpi 7[n]
PC « tmp2 (Rn+] o
[Rn] O
i disp [Rn/PC] o]
Description . _ [disp [RVPC]] 0
The return address and argument pointer register (R29) disp1 [disp2 [Rn/PC]] | - ©
are restored from the stack and program control is Jaddr o
returned to the calling module. The optional number [/addr] 0
operand is used to automatically discard any input [Rn)(Rx) o
parameters from the stack. disp [R/PC J(Rx) o
[disp [Rn/PC])(Rx) 0
Condition Codes faddr (Rx) o
cy oV [7addr](Rx) (0]
_ _ Immediate.Quick (0]
Immediate O
572
CY Unchanged
OV Unchanged
S Unchanged Exceptions
4 Unchanged None
Instruction Format
Format llI

PRELIMINARY INFORMATION

7-86

1.0

RETIS

- Return from Interrupt (System)

RETIS

Syntax Instruction Opcode
retis count.h.r Return from Interrupt — System FA/B
Operation Addressing Modes -

PC « [SP+] Addressing Mode count

PSW « [SP+] Rn | O |

SP « SP + count [Rn] o

[Rn+] o
Description : [-Rn] o
The PC and PSW are popped from the stack and control disp [Rn/PC | o
resumes at the point of interruption. The count operand [disp[Rn/PC]] o
allows the interrupt or exception handler to specify the disp1 [disp2 [Rn/PC]] o)
number of bytes to be automatically discarded from the /addr o
stack. [/addr] | ©
The RETIS instruction checks for the occurance of the [Rn](Rx) o)
Asynchronous System and Asynchronous Task Traps. If disp [Rn/PC J(Rx) (0]
a higher priority exception is detected, processing will [disp [Rn/PC]](Rx) 1o
not return to the point of interruption but will instead be /addr (Rx) o
vectored to the appropiate trap handler. [faddr J(Rx) o)
When the immediate quick addressing mode is Immediate.Quick 0
specified, the data is zero extended to 16-bit length and Immediate (0]
used as the count operand. 55056
Condition Codes Exceptions
Privileged Instruction
cY OV _ S Z llegal Data Field
R R R R Asynchronous System Trap

CY Restored
OV Restored
S Restored
4 Restored

Instruction Format
Format il

1.0

7-87

Asynchronous Task Trap

PRELIMINARY INFORMATION

RETIU

Return from Interrupt (User)

RETIU

Syntax Instruction Opcode
retiu count.h.r Return from Interrupt (User) EA/B
Operation Addressing Modes
PC « [SP+] Addressing Mode count
PSW & [SP+]
Rn 0o
P P
SP « SP +count [Rn] o
e [Rn+] 0
Description [-Rn] o)
The PC and PSW are popped from the stack and disp [Rn/PC | o
program control is returned to the point of interruption. [disp[Rn/PC]] o
The count operand allows the interrupt or exception disp1 [disp2 [Rn/PC }] 0]
handler to specify the number of bytes to be Jaddr o
automatically discarded from the stack. [/addr] o
The RETIU instruction checks for the occurance of [Rn](Rx) o
Asynchronous System and Asynchronous Task traps. If disp [Rn/PC)(Rx) o}
a higher priority exception is detected, processing will [disp [R/PC])(Rx) o)
not return to the point of interruption but will instead be /addr (Rx) o)
vectored to the appropriate trap handler. [faddr J(Rx) o
An lllegal Data Field exception will occur if the execution Immediate.Quick o]
level field in the PSW is not 0 and the ISP flag is set or if Immediate o I
an attempt is made to return to a more privileged T8
execution level.
Instruction Exceptions
Condition Codes lilegal Data Field
Asynchronous System Trap
cy OV S Z Asynchronous Task Trap
R R R R
CY Restored
OV Restored
S Restored
z Restored
FIV FZD FOV FUD FPR
R R R R R
FIV Restored
FZD Restored
FOV Restored
FUD Restored
FPR Restored
Instruction Format
Format i
PRELIMINARY INFORMATION 7-88 1.0

ROT Rotate ROT
Syntax Instruction Opcode
rot.b count.b.r, dst.b.rw Rotate Byte 89
rot.h count.b.r, dst.h.rw Rotate Halfword 8B
rot.w count.b.r, dst.w.rw Rotate Word 8D
Operation Condition Codes

dst « rotate(dst, count) cy oV s z
* 0 * *

Description

The destination operand is rotated the specified number
of bits and stored back in the destination.

The rotate count is specified as signed byte data in a
range from -128 to +127. When the rotate count is
positive, the destination is rotated left with the contents
of the MSB rotating into the LSB. When the rotate count
is negative, the destination is rotated right and the
contents of the LSB is rotated into the MSB. The
destination will remain unchanged if a rotate count of
zero is specified but the flags will be updated.

count > 0 CY MSB LSB

count< 0 MSB LSB (A4

-

If the immediate quick addressing mode is specified for
the count operand, the immediate data is zero extended
1o byte length before its use as the rotate count.

To minimize the instruction execution time and interrupt
latency, the actual rotate count is computed modulo the
destination operand size.

86-131

Instruction Format
Format |, ll

1.0 7-89

CY Setif the last rotated bit was set, cleared if the
last rotated bit was zero or the rotate count was

zero

OV Cleared

S Set if the MSB of the result is set, otherwise
cleared

Set it the result is zero, otherwise cleared

Addressing Modes
Addressing Mcde

count

Rn

[Rn]

[Rn+]

[-Rn]

disp [Rn/PC]

[disp[Rn/PC]]
disp1 [disp2 [Rn/PC 1]}
/addr

[/addr]

[Rn](Rx)

disp [Rn/PC]J(Rx)
[disp [Rn/PC]](Rx)
faddr (Rx)

[/addr}(Rx)
Immediate.Quick
Immediate

0000000000 0O0O0O0O0OOO

g Xxx00000000000000F

X llegal Addressing Mode

Exceptions
None

PRELIMINARY INFORMATION

ROTC

Rotate with Carry ROTC
Syntax Instruction Opcode
rotc.b count.b.r, dst.b.rw Rotate Byte through Carry 99
rotc.h count.b.r, dst.h.rw Rotate Halfword through Carry 9B
rotc.w count.b.r, dst.w.rw Rotate Word through Carry 9D
Operation Condition Codes
dst « rotate_through_carry(dst, count) cy oV s 7
* 0 * *
Description
The concatentation of the destination operand and CY CY Set if the last rotated bit was set, cleared if the
flag is rotated the specified number of bits and stored last rotated bit was zero or the rotate count was
back in the destination. Zero
OV Cleared

The rotate count is specified as signed byte data in a
range from -128 to +127. When the rotate count is
positive, the destination is rotated left with the MSB
rotating through the CY flag into the LSB. When the
rotate count is negative, the destination is rotated right
and the contents of the LSB is rotated through the CY
flag into the MSB. The destination will remain
unchanged if a rotate count of zero is specified but the
flags will be updated.

count>0 CcY

MSB LSB

count< 0 MSB LSB cY

86-132

If the immediate quick addressing mode is specified for
the count operand, the immediate data is zero extended
to byte length before its use as the rotate count.

To minimize the instruction execution time and interrupt
latency, the rotate count is computed modulo the
destination operand size.

Instruction Format
Format 1, I

PRELIMINARY INFORMATION

7-90

S Set if the MSB of the result is set, otherwise

cleared

Z Set if the result is zero, otherwise cleared

Addressing Modes

Addressing Mode

count

Q.
0
-~

Rn

[Rn]

[Rn+]

[-Rn]

disp[Rn/PC]
[disp[Rn/PC]]
disp1 [disp2 [Rn/PC]
/addr

[/addr]

[Rn}(Rx)

disp [Rn/PC]J(Rx)
[disp[Rn/PC])(Rx)
/addr (Rx)

[/addr }(Rx)
Immediate.Quick
Immediate

0000000000 0O0O0ODOO0OO

lllegal Addressing Mode

Exceptions
None

g X X 000000000000 O0O0

-069

1.0

RS R Return from Subroutine RS R

Syntax Instruction Opcode
rsr Return from Subroutine CA
Operation

PC « [SP+]
Description

The return address is popped from the stack and control
is returned to the calling module.

The RSR instruction is used to terminate subroutines
entered using the JSR and BSR instructions.

Condition Codes
CcY - OV S Y4

CY Unchanged
OV Unchanged
Unchanged
Unchanged

N®»

Instruction Format
Format V

Exceptions
None

1.0 7-91 PRELIMINARY INFORMATION

RVBIT

Reverse Bit Order RV B IT
Syntax Instruction Opcode
rvbit src.b.r, dst.b.w Reverse Bit Order
Operation Addressing Modes
dst « bit_reversed(src) Addressing Mode src dst
Rn (0] 0]
Description [Rn] (o] 0
The individual bits of the byte data addressed by the [Rn+] o o
source operand are reversed as follows: [-Rn] o] 0
, . disp [Rn/PC] o 0]
B7 | Bs | Bs | B4 | B3 | B2 | B1 | Bo [disp[Rn/PC]] © o
disp1 [disp2 [Rn/PC]} (o} 0
U faddr o] 0
, [/addr] o o
Bo | B1 [B2 | B3 | B4 | BS | B6 |:7 [Rn](Rx) © o
disp [Rn/PC)(Rx) 0 o)
86-060 [disp [Rn/PC]](Rx) 0 o
/addr (Rx) 0] o]
The source operand is unaffected by this instruction. [/addr }(Rx) 0] 0O 1
If the immediate quick addressing mode is specified for Immediate.Quick 0 X
the source operand, the immediate data is zero Immediate o X

extended to byte length before the bit reversal takes
place.

Condition Codes
CcY (o)) S 4

CY Unchanged
OV Unchanged
S Unchanged
4 Unchanged

Instruction Format
Format |, I

PRELIMINARY INFORMATION

7-92

X lilegal Addressing Mode

Exceptions
None

86-046

1.0

RV BYT Reverse Byte Order

RVBYT

Syntax Instruction Opcode
rvbyt src.w.r, dstw.w Reverse Byte Order
Operation Addressing Modes
dst « byte_reversed(src) Addressing Mode sIc dst
Rn 0] 0
Description [Rn] (o] o
The individual bytes of the word data addressed by the [Rn+] ® o
source operand are reversed as follows: [-An] o o
disp [Rn/PC] (o] O
AN - % -SSR SE—— [disp[RPC]] | © o
Jves | Brez o} Ber 190 disp1 [disp2[RVPC]] | © o)
/addr (o} o)
J [/addr] | © o
[Rn)(Rx) o o
<l R < B 18| NS 2 AUSNS—— disp[Rn/PC](Rx) 0] 0]
Byte 0 Byte 1 Byte 2 Byte 3 [disp [Rn/PC])(Rx) o) fo)
""""""""""" 0 /addr (Rx) | © o
86-059 [/addrJ(Rx) (o] o]
. Immediate.Quick (o} X
The byte order of 16-bit data can be reversed by the Immediate 0 X
ROT instruction.

If the immediate quick addressing mode is specified for
the source operand, the immediate data is zero
extended to word length before the byte reversal takes
place.

This instruction is provided to simplify data transfers
between machines adopting different integer notations.

Condition Codes
CY oV S 2

CY Unchanged
OV Unchanged
S Unchanged
2 Unchanged

Instruction Format
Format 1, ll

1.0 7-93

X lllegal Addressing Mode

Exceptions
None

86-046

PRELIMINARY INFORMATION

SCHO BS Search Bit String for 0 SCHO BS
Syntax Instruction Opcode
schObsu bsrc.b.r, blen.b.r, dst.w.w Search Bit String for 0 (Upward) 5B-00
schObsd bsrc.b.r, blen.b.r, dst.w.w Search Bit String for 0 (Downward) 5B-01
Operation Addressing Modes

dst « bit_offset(first 0 bit) Bit Address bsrc|blen ji dst Byte Address
Rn| X | O O |Rn
Description @[Rn]} O | - O | [Rn]
The source bit string is scanned until a zero bit is found @[Rn+]| O | - R O [[Rn+]
or the bit string is exhausted. If found, the bit offset of @-Rn]| O | - § O |[-Rn]
the detected bit is stored in the destination operand and offset@[Rn]| O | - O | disp[Rn]
the Z flag is cleared. Otherwise, the Z flag is set and the offset@[PC]| O | - O | disp[PC]
bit offset of the next logical bit string after the searched @|[disp[Rn]]| O | - O | [disp[Rn}]
bit string is stored in the destination operand. @[disp[PC]]| O | - O | [disp[PC]]
To minimize the interrupt latency time, the SCHOBS offset@[disp[Rn]]| O | — Q O | dispi[disp2[Rn]]
instruction allows the service of interrupts and faults offset@[disp{ PC}]1{ O | — § O | dispi[disp2[PC]]
following the completion of a bus cycle. After servicing @/addr| O | — @ O | /addr
the interrupt or correction of the fault condition, @[/addr]| O | - O | [/addr]
instruction execution continues from the point of Rx@[Rn]| O | - O | [Rn])(Rx)
interruption. Rx@[Rn]| O | - O | disp[Rn)(Rx)
Register R28 is used as a work register during the Rx@[PC]| O | — g O |disp[PC](Rx)
execution of this instruction, pointing to the current Rx@[disp[Rn]]| O | - § O |[disp[Rn]](Rx)
position within the bit string. After the completion of this Rx@[disp{PC]]| O | — § O | [disp{PC]}(Rx)
instruction, R28 will point to the byte containing the Rx@/addri O | - O | /addr(Rx)
detected bit or the byte containing the final bit in the bit Rx@[/addr]| O | - O | [/addr](Rx)
string. Immediate.Quick | X | - X | Immediate.Quick
Immediate{ X | O X | Immediate
Condition Codes X lllegal Addressing Mode 86-053
- Unavailable Addressing Mode
CcY oV S Z
- _ _ * Exceptions
None
CY Unchanged
OV Unchanged
S Unchanged
Z Setif azero bit is not found, otherwise cleared
Instruction Format
Format VIib
PRELIMINARY INFORMATION 7-94 1.0

SCH1BS

Search Bit String for 1 SCH1 BS
Syntax Instruction Opcode
schibsu bsrc.b.r, blen.b.r, dst.w.w " Search Bit String for 1 (Upward) 5B-02
schibsd bsrc.b.r, blen.b.r, dstw.w Search Bit String for 1 (Downward) 5B-03
Operation Addressing Modes

dst « bit_offset(first 1 bit) Bit Address bsrc dst Byte Address W
Rn| X O | Rn
Description @[Rn]| O O | [Rn]
The source bit string is scanned until a one bit is found or @[Rn+]| O O | [Rn+]
the bit string is exhausted. If found, the bit offset of the @[Rn]| O O | [-Rn]
detected bit is stored in the destination operand and the offset@[Rn]| O O | disp[Rn]
Z flag is cleared. Otherwise, the Z flag is set and the bit offset@{ PC]| O O | disp[PC]
offset of the next logical bit string after the searched bit @[disp[Rn]]| O O | [disp[Rn]]
string is stored in the destination operand. @[disp[PC]]] O O | [disp[PC]]
To minimize the interrupt latency time, the SCH1BS offset@[disp[Rn]]| O O | disp1[disp2[Rn]]
instruction allows the service of interrupts and faults offset@[disp{ PC]]| O O | dispi[disp2[PC]]
following the completion of a bus cycle. After servicing @/addr| O O | /addr
the interrupt or correction of the fault condition, @[/addr}| O O | [/addr]
instruction execution continues from the point of Rx@[Rn]| O O | [Rn]}(Rx)
interruption. Rx@[Rn]| O O | disp[Rn](Rx)
Register R28 is used as a work register during the Rx@[PC]| O O | disp[PC](Rx)
execution of this instruction, pointing to the current Rx@[disp[Rn]]} O O | [disp{Rn]}(Rx)
position within the bit string. After the completion of this Rx@[disp{PC]]| O O | [disp{ PC]](Rx)
instruction, R28 will point to the byte containing the Rx@/addr| O O | /addr (Rx)
detected bit or the byte containing the final bit in the bit Rx@][/addr]{ O O | [/addr](Rx)
string. Immediate.Quick | X X | Immediate.Quick
immediate | X X | Immediate
Condition Codes X lllegal Addressing Mode 86053
— Unavailable Addressing Mode
cY (o)Y) S Z

- — — *

CY Unchanged
OV - Unchanged
S Unchanged
VA Set if a one bit is not found, otherwise cleared

Instruction Format
Format Vilb

1.0

7-95

Exceptions
None

PRELIMINARY INFORMATION

SCHC

Search Character SC H C
Syntax Instruction Opcode
schcu.b src.b.r, slen.b.r, char.b.r Search Byte Character Upward 58-18
sched.b src.b.r, slen.b.r, char.b.r Search Byte Character Downward 58419
schcu.h src.hur, slen.b.r, char.h.r Search Halfword Character Upward 5A-18
sched.h src.hur, slen.b.r, char.h.r Search Halfword Character Downward 5A-19
Operation Addressing Modes
R28 « search character byte address Addressing Mode src slen | char
R27 « search character offset Rn X o) o
[Rn] O - O
Description [Rn+) o] - 0
The character string is searched for the designated [Rn] o - o
character until either the character is found or all disp [Rn/PC | o - o
characters in the string have been examined. Character [disp [Rn/PC 1] (0] - o}
string searches are initiated from the head of the string in disp1 [disp2 [Rn/PC]] o) - 0
the address increment mode and from the tail in the faddr (o) - o)
address decrement mode. [/addr] (o] - (0]
This instruction is interruptable and resumable with [Rn](Rx) o - o
register R28 used to maintain the character address disp [Rn/PC](Rx) o - o
being scanned. Following the execution of the SCHC [disp [R/PC]](Rx) (o] - e}
instruction, R28 contains the address of the first /addr (Rx) (0] - o]
character meeting the search criteria or the next [/addr)(Rx) (o] - o
character after the source string if no matching character Immediate.Quick X - (o]
was found. Register R27 contains the number of Immediate X 0 o)

characters (character offset) from the start position to the
search end position.
Condition Codes

cY oV S Z

- - - *

CY Unchanged
OV Unchanged
S Unchanged
Z Set if the search character is found, otherwise
cleared

Instruction Format
Format Vilb

'PRELIMINARY INFORMATION

7-96

lllegal Addressing Mode
— Unavailable Addressing Mode

Exceptions
lllegal Data Field

86-055

1.0

SC LF Scale Floating SC LF
Syntax Instruction Opcode
sclf.s count.h.r, dst.s.rw Scale Short Real 5C+10
scif.l count.h.r, dst.l.rw Scale Long Real 5E-10
Operation Addressing Modes

dst « dst * 2count Addressing Mode count | dst
Rn O 0]
Description [Rn] (o] 0
The destination operand is scaled by the integer count [Rn+] o o
and stored in the destination operand. Both the integer [-Rn] o o
condition codes and the floating point condition codes disp [Rn/PC] o o)
are updated to reflect the result of the operation. [disp [Rn/PC] o 0
disp1 [disp2 [Rn/PC]] 0} (0]
Condition Codes faddr o) o)
[/addr] (0] O
CY oV S Y4 [Rn](Rx) o o
* 0 * * disp[RnPC(Rx) | © o
[disp[RPC])Rx) | © o
CY Setif the result is negative and non-zero, /addr (Rx) o o
oV ‘g,gg':;’g’e Cleared [/addr)(Rx) | © o
S Setif the mantissa sign bit of the result is set, Immediate.Quick | O X
otherwise cleared Immediate 0 X

Y4 Set if the result is zero, otherwise cleared

FIV FZD Fov FUD FPR

* - * * *

FIV Setif aninvalid operation is attempted,
otherwise unchanged
FZD Unchanged

FOV Set if the result is infinite, otherwise unchanged

FUD Setif the result is denormal, otherwise
unchanged

FPR Set if a precision error occurs, otherwise
unchanged

Instruction Format
Format I

1.0

7-97

86-069

X lllegal Addressing Mode

Exceptions

Reserved Floating Point Operand
Floating Point Overflow

Floating Point Underflow

Floating Point Precision

PRELIMINARY INFORMATION

SET1

Set Bit SET1
Syntax Instruction Opcode
set1 offset.w.r, base.w.rw Bit Test and Set 97
Operation Addressing Modes
CY « bit(base, offset) Addressing Mode offset base
Z « ~bit(base, offset) Rn o o
bit(base, offset) « 1 [Rn] o o
[Rn+] o} o}
Description [-Rn] (o] o)
The bit located at the sum of the byte base address and disp[Rn/PC] o] (0]
bit offset is tested and then set. The CY and Z flags [disp [Rn/PC]] (0] (0]
reflect the state of the bit prior to the execution of the disp1 [disp2 [Rn/PC]] o] (o]
instruction. /addr (o] o]
The location of the designated bit is determined by the [/addr] o o
base operand. If the register addressing mode is used [Rn](Rx) o o
for the base operand, the designated bit is located within disp [Rn/PC](Rx) o o
a general purpose register at the specified bit offset. For {disp [Rn/PC])(Rx) (o] 0
any other permissible addressing mode, the designated /addr (Rx) (o) 0
bit is at the specified bit offset from the base address. An [faddr }(Rx) 0 O
lilegal Data Field exception occurs if the bit offset is Immediate.Quick o] X
outside the range 0 to 31. Immediate (0] X
If the autoincrement or autodecrement addressing mode Illegal Addressing Mode 86-095
is specified for the base operand, the base operand is
treated as word data and is incremented or decremented Exceptions *
by four. When the immediate quick addressing mode is llegal Data Field
specified, the immediate data is zero extended to word
length and used as the bit offset.
Condition Codes
CcY oV S Z
* - — *
CY Setif the designated bit is 1, otherwise cleared
OV Unchanged
S Unchanged
4 Set if the designated bit is 0, otherwise cleared
Instruction Format
Format [, lI
PRELIMINARY INFORMATION 7-98 1.0

SETF

Set Flag S ETF
Syntax Instruction Opcode
seff cond.b.r, dst.b.w Set Flag Condition 47
Operation Condition Codes
if { condition) then
dst « O1H ey OV S Z
else - - - B
dst « OOH
CY Unchanged
- OV Unchanged
Description o S Unchanged
If the specified condition is satisfied by the interger PSW Z Unchanged
condition codes, the value 01H (true) is stored in the
destination. Otherwise, the value 00H (false) is storedin addressing Modes
the destintion. Addressing Mode cond dst 1
The condition code field is found in the lower four bits of 1
o . . Rn (0] (o]
the condition operand. The upper four bits are ignored R o o
and have no effect on this instruction. [Rn]
[Rn+] o] o]
N -R @)
Encoding Name Condition vornmer | o | o
0000 Vv oV=1 disp [R/PC]
0001 NV OV=0 [disp[Rn/PC]] o o
0010 c/L CY=1 disp1 [disp2 [Rn/PC] o} o}
0011 NC/NL CY=0 Jaddr o o
0100 zZ Z=1
0101 NZ Z=0 [/addr] o o
0119 H- (ovvz)oo [Rol(Rx) | O | O
\2 = .
1000 S/N S=1 disp [Rn/PC J(Rx) o] O
1001 NS/P S=0 [disp[Rn/PC]} Rx) @] (0]
} 8 1 <13 g ﬁ|ways /addr (Rx) o) o}
ever
1100 LT (S®O0V)=1 [/addr }(Rx) o o
1101 GE (S®0V)=0 Immediate.Quick O X
1110 LE ((Se0V)vZ)=1 ;
1111 GT ((S®OV)vZ)=0 Immediate | O X |
X lilegal Addressing Mode 86-034
Instruction Format E "
ns
Format |, I xceptio
None

1.0

7-99

PRELIMINARY INFORMATION

SHA : Arithmetic Shift SHA
Syntax Instruction Opcode
sha.b count.b.r, dst.b.rw Arithmetic Shift Byte B9
sha.h count.b.r, dst.h.rw Arithmetic Shift Halfword BB
shaw count.b.r, dst.w.rw Arithmetic Shift Word BD
Operation Condition Codes

dst « arithmetic_shift(dst, count) oY oV s 7
* * * *

Description

The destination operand is arithmetically shifted the
specified number of bits and stored back in the
destination. Integer overflow occurs if the sign of the

result changes at anytime during the execution of this
instruction.

The shift count is specified as signed byte data in a range
from -128 to +127. When the shift count is positive, the
destination is shifted left with a zero bit shifted into the
LSB. When the shift count is negative, the destination is
shifted right with the MSB being shifted into itself. The
destination will remain unchanged if a shift count of zero
is specified but the flags will be updated.

count> 0 cY MSB LS8

count< 0 MSB LSB CcY

[5

If the absolute value of the shift count exceeds the
destination operand length, zero (positive shift counts)
or data consisting of the sign of the destination (negative
shift counts) is stored in the destination.

If the immediate quick addressing mode is specified for
the count operand, the immediate data is zero extended
to byte length before its use as the shift count.

86-133

Instruction Format
Format i, i

PRELIMINARY INFORMATION

7-100

CY Set if the last shifted bit was set, cleared if the
last shifted bit was zero or the shift count was
zero

OV Set if integer overflow occurs, otherwise cleared

S Set if the result is negative, otherwise cleared
Z Set if the result is zero, otherwise cleared

Addressing Modes
Addressing Mode

Q
[7]
-

count

Rn

[Rn]

[Rn+]

[-Rn]

disp [Rn/PC]
[disp[Rn/PC]]

disp1 [disp2 [Rn/PC]}
/addr

[/addr]

[Rn](Rx)

disp [Rn/PC J(Rx)
[disp[Rn/PC])(Rx)
/addr (Rx)

[/addr }(Rx)
Immediate.Quick
immediate

lMegal Addressing Mode B6-069

000000000 0D0O0O00O0O0O
XX 000000000000 0O0

Exceptions
None

1.0

SHL

Logical Shift

Syntax Instruction Opcode
shl.b count.b.r, dst.b.rw Logical Shift Byte A9
shl.h count.b.r, dst.h.rw Logical Shift Halfword AB
shl.w count.b.r, dst.w.rw Logical Shift Word AD
Operation Condition Codes

dst « logical_shift(dst, count) cY oV

* 0 * *

Description

The destination operand is logically shifted the specified
number of bits and stored back in the destination.

The shift count is specified as signed byte data in a range
from -128 to +127. When the shift count is positive, the
destination is shifted left with a zero bit shifted into the
LSB. When the shift count is negative, the destination is
shifted right with a zero bit being shifted into the MSB.
The destination will remain unchanged if a shift count of
zero is specified but the flags will be updated.

count > 0 cY MSB . LSB

count< 0 MSB LSB cY
0 —» -

86-134

If the absolute value of the shift count exceeds the
destination operand length, zero is stored in the
destination.

It the immediate quick addressing mode is specified for
the count operand, the immediate data is zero extended
to byte length before its use as the shift count.

Instruction Format
Format |, I

1.0

7-101

CY Set if the last shifted bit was set, cleared if the
last shifted bit was zero or the shift count was

zero
OV Cleared
S Set if the MSB of the result is set, otherwise
cleared

Set if the result is zero, otherwise cleared

Addressing Modes
Addressing Mode count dst
Rn 0] 0]
[Rn] 0] o
[Rn+] o (0]
[-Rn] o] 0]
disp [Rn/PC] (o) 0]
[disp[Rn/PC]} O (0]
disp1 [disp2 [Rn/PC]] o) 0]
/addr o (0]
[/addr} (0] o]
[Rn](Rx) 0] (@)
disp [Rn/PC }(Rx) 0] (0]
[disp [Rn/PC])(Rx) O O
faddr (Rx) (@] (o]
[/addr }(Rx) (o] (@]
Immediate.Quick 0 X
Immediate O X

86-069

Illegal Addressing Mode

Exceptions
None

PRELIMINARY INFORMATION

SKPC

SKPC

Skip Character
Syntax Instruction Opcode
skpcu.b src.b.r, slen.b.r, char.b.r Skip Byte Character Upward 58-1A
skpcd.b src.b.r, slen.b.r, char.b.r Skip Byte Character Downward 58+<1B
skpcu.h src.h.r, slen.b.r, char.h.r Skip Halfword Character Upward 5A«1A
skpcd.h src.h.r, slen.b.r, char.h.r Skip Halfword Character Downward 5A+1B
Operation Addressing Modes
R28 « skipped character byte address Addressing Mode src slen | char
R27 « skipped character offset Rn X o o
[Rn] o) - o)
Description [Rn+] 0] - o]
The source character string is scanned until a position [-Rn] o - o
different from the designated character is reached or the disp [Rn/PC] (0] - o}
string is exhausted. Character string scanning is initiated [disp [Rn/PC]] o] - 0
from the head of the string in the address increment disp1 [disp2 [Rn/PC]] 0 - 0
mode and from the tail in the address decrement mode. faddr o - (o)
This instruction is interruptable and resumable with [/addr] o - o
register R28 used to maintain the character address [Rn](Rx) 0o - o
being scanned. Following the execution of the SKPC disp [Rn/PC](Rx) o - o
instruction, R28 contains the address of the first [disp[Rn/PC]1](Rx) (0] - (o]
character not meeeting the skip criteria or the next /addr (Rx) 0 - 0
character after the source string if the skip criteria was [/addr](Rx) (o] - 0
continuously satisfied. Register R27 contains the Immediate.Quick X - (0]
number of characters (offset) from the start position to Immediate X 0o o)
the skip end position. X Tlegal Addressing Mode 86-055
— Unavailable Addressing Mode
Condition Codes
Exceptions
oY OV S 2 llegal Data Field
CY Unchanged
OV Unchanged
S Unchanged
Z Set if the skip character is found, otherwise
cleared
Instruction Format
Format Vliib
PRELIMINARY INFORMATION 7-102 1.0

STPR

STPR

Store Privileged Register
Syntax Instruction Opcode
stpr regiD.w.r, dst.w.w Store Privileged Register 02
Operation Condition Codes
dst « PrivilegedRegister(regiD) cy ov S 7
Description
The contents of the specified privileged register are CY Unchanged
copied to the destination operand. OV Unchanged
S Unchanged
D Register Name Unchanged
0 ISP Interrupt Stack Pointer
1 LoSP Level 0 Stack Pointer R
2 [isp Tovel 1 Stack Pointer Instruction Format
3 L2SP Level 2 Stack Pointer Format |, Il
4 L3SP Leve! 3 Stack Pointer
5 SBR System Base Register .
6 TR Task Register Addressmg Modes -
7 SYCW System Control Word Addressing Mode reglD dst
8 TKCW Task Control Word Rn o o
9 PIR Processor ID Register
15 Psw2 Emutation Mode Program Status Word [Rn] o o
16 ATBRO Area Table Base Register 0 [Rn+] o o
17 ATLRO Area Table Length Register 0 [-Rn] o (0]
18 ATBR1 Area Table Base Register 1 disp [Rn/PC] o) lo)
19 ATLR1 Area Table Length Register 1 [disp [Rn/PC1] Io) 0o
20 ATBR2 Area Table Base Register 2 . .
21 ATLR2 Area Table Length Register 2 disp1 { disp2 [Rn/PC]] 0 o
22 ATBR3 Area Table Base Register 3 /addr o o
23 ATLR3 Area Table Length Register 3 [faddr] o) (0]
24 TRMOD Trap Mode Register [Rn](Rx) (o) o)
26 ADTR1 Address Trap Register 1 \
27 ADTRMO Address Trap Mask Register 0 [disp[Rn/PCT](Rx) O 0
28 ADTAMI Address Trap Mask Register 1 /addr (Rx) o 0
36-129 [/addr](Rx) o o
Immediate.Quick O X
An lllegal Data Field exception will occur if the register ID Immediate o) X

field is not in the range of 0 to 31. Instruction execution
results will also be unpredicatable if an undefined

register ID is specified.

1.0

7-103

X lllegal Addressing Mode

Exceptions

Privileged Instruction
llegal Data Field

86-085

PRELIMINARY INFORMATION

STTASK

STTASK

Store Task
Syntax Instruction Opcode
sttask listw.r Store Task Context FC/D
Operation Condition Codes
TCB « TaskContext cy oV S 2
Description —
The current task context is copied to the Task Control CY Unchanged
Block (TCB) designated by the Task Register. The task OV Unchanged
context consists of : S Unchanged
» General Purpose Registers z Unchanged
The saving of the general purpose registers (R30- .
RO) is controlled by the list operand. Bits set in the Addressing Modes
list operand identfy which general purpose registers Addressing Mode list
are saved in the TCB. Bit 31 of the register list is
Reserved for Future Use and must be zero. Rn o
[Rn] o)
RTRFRIRIRTRIR [Rn+] O
F322222222221111111111%98765423210
U0D98765432109876543210 [—Rn] O
86-130 disp [Rn/PC] (0]
[disp[Rn/PC1] (0]
« Area Table Registers disp1 [disp2 [Rn/PC]] fe)
In virtual mode, the area table registers faddr (e]
(ATBRO/ATLRO-ATBR3/ATLR3) specified by the [/addr] 0
STCW are saved with the current task context.
[Rn](Rx) 0
» Stack Pointers (L3SP-LOSP) disp[RnPCI(Rx) | O
[disp [Rn/PC]](Rx) (0]
« Task Control Word (TKCW) /addr (Rx) 0
[/addr J(Rx) o}
Because no valid context exists between the STTASK Immediate.Quick o)
instruction and a subsequent LDTASK instruction, the Immediate o)
ISP becomes the current stack pointer during the 5087
execution of the STTASK instruction.
) ! Exceptions
Instruction Format Privileged Instruction
Format lll
PRELIMINARY INFORMATION 7-104 1.0

SUB

Subtract SU B
Syntax Instruction Opcode
sub.b src.br, dst.b.rw Subtract Byte
sub.h src.h.r, dst.h.rw Subtract Halfword
sub.w src.w.r, dst.w.rw Subtract Word
Operation Addressing Modes
dst « dst-src Addressing Mode src dst
Rn (0] (0]
Description [Rn] 0 o)
The source operand is subtracted from the destination [Rn+] o o
operand and the result stored in the destination [-Rn] o o
operand. disp [Rn/PC] o] (0]
If the immediate quick addressing mode is specified for [disp[RnPC]} | O o
the source operand, the immediate data is zero disp1 [disp2 [Rn/PC]] o 0
extended to the source operand length before /addr o o
performing the operation. [/addr] o o
[Rn](Rx) (o} (o}
Condition Codes disp[Rn/PC](Rx) | O o
[disp[RnPC])Rx) | © o
cy OV /addr(Rx) | © o
* : [/addr](Rx) | © o
Immediate.Quick O X
CY Setif a borrow is generated, otherwise cleared Immediate o) X
OV Set if integer overflow occurs, otherwise cleared T

Set if the result is negative, otherwise cleared

Set if the result is zero, otherwise cleared

Instruction Format
Format |, |l

1.0

7-105

lliegal Addressing Mode

Exceptions
None

PRELIMINARY INFORMATION

SUBC

Subtract with Carry (Borrow)

SUBC

Syntax Instruction Opcode
subc.b src.b.r, dst.b.rw Subtract Byte with Carry 98
subc.h src.h.r, dst.h.rw Subtract Halfword with Carry 9A
subc.w src.w.r, dst.w.rw Subtract Word with Carry 9C
Operation Addressing Modes
dst « dst—src-CY Addressing Mode sre dst
Rn (0} O
Description [Rn] o (0]
The contents of the source operand and the CY flag are [Rn+] o o
subtracted from the destination operand and the result [-Rn] o o
stored in the destination operand. disp [Rn/PC] o) 0
If the immediate quick addressing mode is specified for ~ [dsp[RaPC]] | O o
the source operand, the immediate data is zero disp1[disp2 [Rn/PC]] o o
extended to the source operand length before faddr o o
performing the operation. [/addr] o o
[Rn}(Rx) o} (o}
Condition Codes disp[Ra/PC)(Rx) | O o
[disp[Rn/PC])(Rx) (@] (o]
cYy OV Z /addr (Rx) | © o
* * * [/addr J(Rx) 0 o
Immediate.Quick 0] X
8:(/ get iz a borrow is rgglenerated, othehnNise cleelxred g Immediate o X
et if integer overflow occurs, otherwise cleare -
Set if the result is negative, otherwise cleared X lllegal Addressing Mode B
Set if the result is zero, otherwise cleared
Exceptions
Instruction Format None
Format I, I
PRELIMINARY INFORMATION 7-106 1.0

SUBDC

SUBDC

Subtract Decimal with Carry

Syntax Instruction Opcode
subdc src.b.r, dst.b.rw, patb.r Subtract Decimal with Carry 59-01
Operation Addressing Modes

dst « dst—src—CY using mask pattern Addressing Mode src dst pat

Rn 0 (0] -
Description [Rn) (o) (o) -
The CY flag and source operand are subtracted from the [Rn+] o o -
destination operand with the result stored in the [-Rn] o o -
destination operand. The decimal subtraction operation disp [Rn/PC] (0] (0] -
occurs only for the unmasked portion of the data, as [disp[Rn/PC] 0o 0 -
determined by the mask pattern. disp1 [disp2 [Rn/PC }] (o] 0 -
The CY flag will be set if there is a borrow out of the /addr o o -
operation. If the result is not zero or a borrow is [/addr] o o -
generated, the Z flag will be cleared, otherwise it remains [Rn](Rx) o o -
unchanged. disp [Rn/PC J(Rx) (0] (0] -
Following the subtraction operation, the result is [disp[R0PC]I(Rx) | ©O o -
checked to verify that a valid BCD representation exists /addr (Rx) o o -
in the unmasked portion of the result. If either value is [/addr]J(Rx) o o -
not a valid BCD digit (0-9), a Decimal Format exception Immediate.Quick o) X -
will occur and the destination will remain unchanged. Immediate o X o
86-054

Condition Codes
cY oV S Z
* - - *

CY Setif ais generated, otherwise cleared
OV Unchanged
S

Unchanged
Z Unchanged if the result is zero, otherwise
cleared
Instruction Format
Format Vllc

1.0 7-107

X lllegal Addressing Mode
— Unavailable Addressing Mode

Instruction Exceptions
Decimal Format

PRELIMINARY INFORMATION

SUBF

Subtract Floating S U B F

Syntax Instruction Opcode
subf.s src.s.r, dst.s.rw Subtract Short Real 5C+19
subf.l src.l.r, dst.l.rw Subtract Long Real S5E«19

Operation Addressing Modes

dst « src - dst Addressing Mode src dst

Rn (o] O

Description [Rn] (o] 0]

The difference of the source operand and destination [Rn+] o o

operand is stored in the destination operand. Both the [-Rn] (o] o

integer and floating point condition codes are updated to disp[R/PC) | O (o]

reflect the result of the operation. [disp[Rn/PC]] (0] (0]

If the source and destination operands are equal, the disp1[disp2 [Rn/PC]] o o

sign of the zero result will be determined by the /addr o o

programmed rounding mode. [/addr] (o] (o]

[Rn](Rx) o} 0]

Condition Codes disp[Rn/PCI(Rx) | O o

[disp [Rn/PC])(Rx) (0} o]

cY OV /addr (Rx) | © o

* 0 [/addr J(Rx) (o} o !
Immediate.Quick A X
CY Setit tr)e result is negative and non-zero, Immediate A X
otherwise cleared X Tllegal Addressing Mode 86-045

OV Cleared

S Set if the mantissa sign bit of the result is set,

otherwise cleared

4 Set if the result is zero, otherwise cleared

Fiv FZD

FOV

FUD

FPR

£ -

*

*

*

FIV Setif aninvalid operation is attempted,

otherwise unchanged

FZD
FOV
FUD

FPR

Unchanged

unchanged

unchanged

Instruction Format
Fomat Il

PRELIMINARY INFORMATION

Set if a precision error occurs, otherwise

A Reserved Addressing Mode

Exceptions

Reserved Floating Point Operand
Floating Point Overflow

Floating Point Underflow

Floating Point Precision

Set if the result is infinite, otherwise unchanged
Set if the result is denormal, otherwise

7-108

1.0

SUBRDC

Subtract Decimal Reversed with Carry

SUBRDC

Syntax Instruction Opcode
subrdc src.b.r, dst.b.rw, patb.r Subtract Decimal Reversed with Carry 59-02
Operation Addressing Modes

dst « src—dst—CY using mask pattern Addressing Mode src dst pat

Rn 0] (o} -
Description [Rn] (o) (o) -
The CY flag and destination operand are subtracted from [Rn+] o o -
the source operand with the result stored in the [-Rn] o o -
destination operand. The decimal subtraction operation disp [Rn/PC] (o] o] -
occurs only for the unmasked portion of the data, [disp[Rn/PC]] o] (o] -
determined by the mask pattern. disp1 [disp2 [Rn/PC]] (o] 0 -
The CY flag will be set if there is a borrow out of the /addr o o -
operation. If the result is not zero or a borrow is [/addr] o o -
generated, the Z flag will be cleared, otherwise it remains [Rn](Rx) o o -
unchanged. disp [Rn/PC J(Rx) (o] (o] -
Following the subtraction operation, the result is [disp[Rn/PC])(Rx) | O o -
checked to verify that a valid BCD representation exists /addr (Rx) o o -
in the unmasked portion of the result. If either value is [/addr J(Rx) o o -
not a valid BCD digit (0-9), a Decimal Format exception Immediate.Quick o X -
will occur and the destination will remain unchanged. Immediate o X o
86-054

Condition Codes
CcY oV S Z
* - - *

CY Setif a borrow is generated, otherwise cleared
OV Unchanged
S

Unchanged
y4 Unchanged if the result is zero, otherwise
cleared
instruction Format
Format Vllc

1.0

7-109

X llegal Addressing Mode
— Unavailable Addressing Mode

Exceptions
Decimal Format

PRELIMINARY INFORMATION

TAS' Test and Set TAS'
Syntax Instruction Opcode
tasi dst.b.rwi Test and Set interlocked E0/1
Operation Addressing Modes

lock Addressing Mode dst
flags « dst— OFFH
dst « OFFH An | O
unlock [Rn] o
[Rn+) @)
Description g R["/:C’:‘] o
This instruction is used to synchronize processes or [di;:p[[Rn;‘PC]} g
prov'lde rputual exclusion in a multiple processor disp1 [disp2 [Rn/PC]] o
configuration. raddr o
The processor informs the other bus masters in the [/addr] o
system that an indivisble operation will take place by [Rn](Rx) o
asserting the bus lock output. The destination operand disp [R/PC](Rx) o
is then fetched and compared with OFFH and the result .
. o [disp [Rn/PC]](Rx) O
stored in the condition codes. The contents of the addr (Rx o
destination operand is then replaced with the value Jadd Rx) o
OFFH and the bus lock output is then negated, allowing | [:_ r](() ;)
other bus masters to again access the shared data. mme I'ate' df’":k i
. . . age mmedaiate
If th(? reglster addressmg' mode is spc.acmed f-or thle X Tegal Addressing Mods 555
destination, the execution of the instruction is
meaningless but the operation is carried out.
Exceptions
Condition Codes None
cY oV S 4
* * * *
CY Setif a borrow is generated, otherwise cleared
OV Setif integer overflow occurs, otherwise cleared
S Set if the comparison results are negative,
otherwise cleared
Z Set if the comparison results are zero, otherwise
cleared
Instruction Format
Format Il
PRELIMINARY INFORMATION 7-110 1.0

TB Test and Branch ' TB

Syntax Instruction Opcode
tb Rn.w.r, disp16 Test and Branch C7+5
Operation
if Rn = 0 then
PC « PC + sign_extended(disp16)
else
PC « NextPC
Description

The specified general purpose register is tested against
zero and if zero, the branch is taken.

The 16-bit displacement field is sign extended to 32 bits
and added to the PC to compute the target address.
The PC relative addressing mode is implicitedly selected
by these instructions. The value of the PC used to
compute the target address is the first byte of the test
and branch instruction.

Condition Codes
CcY oV S Z

CY Unchanged
OV Unchanged
S Unchanged
4 Unchanged

Instruction Format
Format VI

Exceptions
None

1.0 7-111 PRELIMINARY INFORMATION

TEST

TEST

Test
Syntax Instruction Opcode
test.b src.b.r Test Byte Fo0/1
test.h src.h.r Test Haltword F2/3
test.w src.w.r Test Word F4/5
Operation Addressing Modes
flags « src-0 Addressing Mode src
Rn (0]
Description [Rn] O
Zero is subtracted from the source operand and the [Rn+] o
result of the operation is reflected in the PSW register. [An] o
If the immediate quick addressing mode is specified for disp[RnPC] | O
the source operand, the immediate data is zero ~ ldisp[RnPC]] | O
extended to the source operand length before disp1 [disp2[Rn/PC]] [O
performing the operation. /addr o
[/addr] 0]
Condition Codes _ [Rn}(Rx) | O
disp [Rn/PC }(Rx) 0]
Ccy OV S z [disp[R/PC])Rx) | ©
0 0 * * faddr (Rx) (0]
[/addr J(Rx) o1
CY Cleared Immediate.Quick (0]
OV Cleared) _) Immediate o
S Setif the result is negative, otherwise cleared LT,
Z Setif the result is zero, otherwise cleared
Instruction Format Exceptions
None
Format lli
PRELIMINARY INFORMATION 7-112 1.0

treated as word data and is incremented or decremented
by four. When the immediate quick addressing mode is
specified, the immediate data is zero extended to word
length and used as the bit offset.

Condition Codes
CcY Qv S V4
* — —_— *
CY Set if the designated bit is 1, otherwise cleared
OV Unchanged
S Unchanged
4 Set if the designated bit is 0, otherwise cleared
Instruction Format
Format |, Il

1.0

7-113

TEST1 Test Bit TEST1
Syntax Instruction Opcode
test1 offset.w.r, base.w.r Bit Test 87
Operation Addressing Modes

CY « bit(base, offset) Addressing Mode offset base
Z « ~bit(base, offset) Rn o 0
[Rn] o) o
Description [Rn+] (o) o]
The bit located at the sum of the byte base address and [-Rn] o o
bit offset is tested. The CY and Z flags reflect the state of disp[Rn/PC] o o
the bit prior to the execution of the instruction. [disp[Rn/PC]] (0] (0]
The location of the designated bit is determined by the disp1 [disp2 [Rn/PC] o o
base operand. If the register addressing mode is used /addr o o
for the base operand, the designated bit is located within [/addr] o o
a general purpose register at the specified bit offset. For [Rn](Rx) o o
any other addressing mode, the designated bit is at the disp [Rn/PCJ(Rx) o o
specified bit offset from the base address. An lllegal Data [disp[Rn/PC]}(Rx) (0] O
Field exception occurs if the bit offset is outside the /addr (Rx) (0] (0]
range 0 to 31. [faddr }(Rx) o] 0
If the autoincrement or autodecrement addressing mode immediate.Quick o X
is specified for the base operand, the base operand is Immediate o X

lllegal Addressing Mode

Exceptions
llegal Data Field

86-095

PRELIMINARY INFORMATION

TRAP

Trap on Condition TRAP
Syntax Instruction Opcode
trap cond&vector.b.r Trap on Condition F8/9
Operation Condition Codes
if (condition) then
[-SP] « Exception Code cy OV S Z
[-SP] « PSW - - - -
[-SP] « NextPC
PC « [Exception Vector(48 + vector)] CY Unaffected
OV Unaffected
. S Unaffected
Description Unaffected
If the specified condition is satisfied by the integer
condition codes, the specified trap handler is entered. Instruction Format
The upper four bit field of the operand contains the Format Ill
condition code field which indicates under what
circumstances the trap will be taken. The lower four bit Addressing Modes
field contains the vector offset from the software trap Addressing Mode cond&vector
base vector. B P
7 4 3 0 {Rn] o
condition code vector [[Fj:' } 8
n
86-090 disp [Rn/PC] o)
Encoding Name i [disp[RnPC]] o
0001 NV OV=0 /addr O
0010 C/L CY =1 Jadd
0011 NG /NL CY =0 R[a '] ©
0100 Z Z=1 [Rn](Rx) ©
site M {5z yoct i il I
v = .
0111 H (CYvZ)=0 [disp [RP/PC]](Rx) o
1000 S/N S=1 /addr (Rx) (o)
1001 NS/P S=0 [/addr}(Rx) o}
1010 T Always ; ;
1011 F Never Immedlate.Qt‘uck 0
1100 LT (S®OV)=1 Immediate o
1101 GE (S®0V)=0 86076
1110 LE ((S®0V)vZ)=1
1111 GT ((S®0V)vZ)=0
Exceptions
Software Trap
PRELIMINARY INFORMATION 7-114 1.0

TRA P F L Trap on Floating Point Exception

TRAPFL

Syntax Instruction Opcode
trapfl Trap on Floating Point Exception CB
Operation

if (TKCWI[8:4] A PSW[12:8]) # 0 then
Floating Point Operation Exception

Description

The bit-wise AND of floating point trap mask field in the
TKCW register and the floating point condition codes in
the PSW is computed and if the result is non-zero, a
floating point operation trap will occur.

Condition Codes
CY oV S Z

CY Unchanged
OV Unchanged
S Unchanged
4 Unchanged

FIvV FZD FOV___FUD FPR

FIV Unchanged
FZD Unchanged
FOV Unchanged
FUD Unchanged
FPR Unchanged

Instruction Format
Format V

Exceptions

Floating Point Zero Divide
Invalid Floating Point Operation
Floating Point Overflow
Floating Point Underflow
Floating Point Precision

1.0 7-115

PRELIMINARY INFORMATION

UPDATE

UPDATE

Update Area Table Entry
Syntax Instruction Opcode
update va.p.r, newATE.d.r Update Area Table Entry 15
Operation Addressing Modes
ATE(va) « newATE Addressing Mode va |newATE
Rn (o] O
Description [Rn] (0] (0]
The contents of specified ATE are replaced with the [Rn+] o o
source doubleword (64-bit) operand. The virtual address [-Rn] (o] (o]
and the section designator register (R28) are used to disp[Rn/PC] (o] o}
identify the ATE to be referenced. [disp [Rn/PC]] (o] (o]
If the contents of R28 are OFFFFFFFFH, the virtual disp1 [disp2 [Rn/PC]] o o
address operand is translated using the current virtual faddr o 0
address space. Following the execution of the [/addr] o) 0
instruction, the Z flag is updated to reflect the result of [Rn])(Rx) 0 o}
the translation operation. disp [Rn/PC)(Rx) o (o]
Otherwise, R28 is assumed to contain a pointer to an [disp [Rn/PC]](Rx) o o
area table and the specifed ATE is located in the area /addr (Rx) o o
table. No validity checks are performed on the contents [/addr](Rx) o) (o]
of the ATE and if the referenced ATE is cached in the Immediate.Quick o A
TLB, the entry is invalidated. Immediate o} A
If the immediate quick addressing mode is specified for ~ A Reserved Addressing Mode 86079
the virtual address operand, the data is zero extended to
32-bit length and used as the virtual address. Exceptions
This instruction can be executed in either the real or Privileged Instruction
virtual address mode.
Condition Codes
CcY oV S Z
- — - *
CY Unchanged
OV Unchanged
S Unchanged
Y4 Set if the address translation is invalid, otherwise
cleared
Instruction Format
Format |, Il
PRELIMINARY INFORMATION 7-116 1.0

UPDPSW

Update PSW U P D PSW
Syntax Instruction Opcode
updpsw.h newPSW.w.r, mask.w.r Update Halfword PSW 4A
updpsw.w newPSW.w.r, mask.w.r Update Word PSW 13
Operation Addressing Modes
PSW « (PSW A ~mask) v (newPSW A mask) Addressing Mode newPSW | mask
Rn o] 0]
Description [Rn] (o] o
The contents of the PSW are updated with the contents [Rn+] o o
of the new PSW image at the positions specified by the [-Rn] o o
mask operand. The UPDPSW.H instruction is restricted disp [Rn/PC] o o
to modifying only the condition code fields in the PSW. [disp [Rn/PC 1] 0 (0]
The UPDPSW.W is a privileged instruction and can also disp1 [disp2 [Rn/PC]] 0 o
modify the PSW control field. faddr o] (0]
If the immediate quick addressing mode is specified, the [/addr] o o
immediate data is zero extended to 32-bit length and [Rn](Rx) o o
used as the new PSW or mask operand. disp[Rn/PC J(Rx) (0] (0]
[disp [R/PC] }(Rx) o o}
Condition Codes /addr (Rx) o o
[faddr J(Rx) o} (o}
Updated according to mask operand Immediate.Quick o o)
Immediate (o} O
Instruction Format 86-084
Format |, Il
Exceptions

1.0

7-117

Privileged Instruction (updpsw.w)

PRELIMINARY INFORMATION

U P D PT E Update Page Table Entry U P D PT E
Syntax Instruction Opcode
updpte va.p.r, newPTE.w.r Update Page Table Entry 14
Operation Condition Codes

PTE(va) « newPTE cy ov s 7
* - - *
Description

The contents of specified PTE are replaced with the
source operand. The virtual address and the section
designator register (R28) are used to identify the PTE to
be referenced.

If the contents of R28 are OFFFFFFFFH, the virtual
address operand is translated using the current virtual
address space. Following the execution of the
instruction, the CY and Z flags are updated to reflect the
result of the translation operation. The CY flag will be set
if the area is not present (i.e, swapped out to a disk) while
the Z flag is set if the referenced address translation fails.
If either the Z or CY flags are set, the destination remains
unchanged.

Otherwise, R28 is assumed to contain a pointer to an
area table and the specifed PTE is located in the
specified page table. No validity checks are performed
on the contents of the PTE and if present in the TLB, the
entry is invalidated.

When the immediate quick addressing mode is
specified, the immediate data is zero extended to 32-bit
length and used as the virtual address for new PTE.

This instruction can be executed in either the real or
virtual address mode.

Instruction Format
Format |, Il

PRELIMINARY INFORMATION

7-118

CY Setif the area is not present, otherwise cleared
OV Unchanged
S Unchanged
Z Set if the address translation is invalid, otherwise
cleared

Addressing Modes
Addressing Mode

newPTE

<
0

Rn

[Rn]

[Rn+]

[-Rn]

disp[Rn/PC]

[disp[Rn/PC]]
disp1 [disp2 [Rn/PC]}
/addr

[/addr]

[Rn](Rx)

disp [Rn/PC }(Rx)
[disp [Rn/PC }](Rx)
/addr (Rx)

[/addr)(Rx)
Immediate.Quick
Immediate

000000000 0O0O0OD0OO0OO

g OO0 0000000000000

-080

Exceptions
Privileged Instruction

1.0

XCH

Exchange XC H

Syntax Instruction Opcode
xch.b dst1.b.rw, dst2.b.rw Exchange Byte 41
xch.h dst1.h.rw, dst2.h.rw Exchange Halfword 43
xch.w dst1.w.rw, dst2.w.rw Exchange Word 45
Operation Addressing Modes
dst1 o dst2 Addressing Mode dsti dst2
Rn 0] 0]
Description [Rn] A o)
The contents of the first destination operand is [Rn+] A o
exchanged with the contents of second destination [-Rn] A o
operand. disp [Rn/PC] A o]
In the pPD70616 microprocessor, a Reserved ~ ldsp[RnPC]] | A o
Addressing Mode exception will occur if the first disp1 [disp2 [Rn/PC]] A o
destination operand is not a general purpose register. /addr A o
[/addr] A (0]
Condition Codes [Rn](Rx) | A %
disp[Rn/PC J(Rx) A (0]
cY OV S [disp [Rn/PC])(Rx) A o)
- - - - Jaddr (Rx) A (o]
[/addr](Rx) A (0]
CY Unchanged Immediate.Quick X X
OSV Bncﬂangeg Immediate X X
nchange . |
{llegal Addressing Mode 86058
z Unchanged A Regerved Addresgsing Mode
Instruction Format Exceptions
Format | None
1.0 7-119 PRELIMINARY INFORMATION

XOR

Exclusive OR XO R
Syntax Instruction Opcode
xor.b src.b.r, dst.b.rw Exclusive OR Byte BO
xor.h src.h.r, dst.h.rw Exclusive OR Halfword B2
Xor.w sre.w.r, dst.w.rw Exclusive OR Word B4
Operation Addressing Modes
dst « dst®src Addressing Mode sre dst
Rn (o} (o]
Description [Rn] (o} (o}
The bit-wise exclusive OR of the source operand and the [Rn+] o o
destination operand is stored in the destination operand. [-Rn] o o
If the immediate quick addressing mode is specified for .d‘s" [Rn/PC] o o
the source operand, the immediate data is zero ~ [dsp[Rn/PC]] | O o
extended to the source operand length before disp1[disp2[Rn/PC]] | O ©
performing the operation. faddr | O o
[/addr) 0] @]
Condition Codes [Rn)(Rx) O 0
disp[R/PC)(Rx) | © o)
cY OV [disp[RVPC](Rx) | © o
- 0 /addr (Rx) (o} o
[faddr }(Rx) 0 o |1
8\Y/ gFChangd Immediate.Quick (0] X
eare .
S Set if the result is negative, otherwise cleared _ Immediate °©)ir-
Z Setif the result is zero, otherwise cleared illegal Addressing Mode 048
Instruction Format Exceptions
Format |, Il None
PRELIMINARY INFORMATION 7-120 1.0

XORBS

the address of the byte containing the final bit of the
source bit string while R27 contains the address of the
byte containing the final bit of the destination bit string.

Condition Codes
CY (o)) S Z

CY Unchanged
OV Unchanged
S Unchanged
Z Unchanged

Instruction Format
Format Vllib

1.0 7-121

XORBS XOR Bit String
Syntax Instruction Opcode
xorbsu bsrc.b.r, blen.b.r, bdst.b.rw XOR Bit String (Upward) 5B+18
xorbsd bsrc.b.r, blen.b.r, bdst.b.rw XOR Bit String (Downward) 5B-19
Operation Addressing Modes
bdst « bsrc ® bdst Addressing Mode bsrc | blen bdst
Rn X 0] X
Description @[Rn] o) - (o)
The bit-wise XOR of the source and destination bit @[Rn+] o - o
strings is stored in the destination bit string. Specifying @[-Rn] o - o)
the direction of the operation allows the correct result to offset@[Rn/PC] o - o)
be computed when bit strings overlap. @[disp[Rn/PC]] (o] - 0
To minimize the interrupt latency time, the XORBS offset@[disp[Rn/PC]] | ©O - o
instruction allows the service of interrupts and faults @/addr o - o)
following the completion of a bus cycle. After servicing @[/addr] o - o
the interrupt or correction of the fault condition, Rx@[Rn] o - o
instruction execution continues from the point of Rx@[Rn/PC] o - o
interruption. Rx@[disp [Rn/PC]] (o] - 0
During the execution of the XORBS instruction, registers Rx@/addr o - o
'R28 and R27 contain pointers to the bytes within the Rx@[/addr] o - o
source and destination bit strings to be processed next. Immediate.Quick X - X
Following the execution of the instruction, R28 contains Immediate X o X

fegal Addressing Mode
— Unavailable Addressing Mode

Exceptions
None

86-052

PRELIMINARY INFORMATION

XORNBS

XOR Complemented Bit String XO R N BS
Syntax instruction Opcode
xornbsu bsrc.b.r, blen.b.r, bdst.b.rw XOR Complemented Bit String (Upward) 5B+1A
xornbsd bsrc.b.r, blen.b.r, bdst.b.rw XOR Complemented Bit String (Downward) 5B-1B
Operation Addressing Modes
bdst « ~bsrc @ bdst Addressing Mode bsrc | blen bdst
Rn X (o} X
Description @[Rn] 0] - 0
The bit-wise XOR of the complemented source bit string @[Rn+] o - o
and the destination bit string is stored in the destination @[-Rn] o - o
bit string. Specifying the direction of the operation offset@[Rn/PC] o} - 0
allows the correct result to be computed when bit strings @[disp[Rn/PC] (o] - o)
overlap. offset@[disp [Rn/PC]] (0] - o]
To minimize the interrupt latency time, the XORNBS @/addr o - o
instruction allows the service of interrupts and faults @[/addr] o - o
following the completion of a bus cycle. After servicing Rx@[Rn] o - o
the interrupt or correction of the fault condition, Rx@[Rn/PC] o - o
instruction execution continues from the point of Rx@{ disp [Rn/PC 1] (0] - (o]
interruption. Rx@/addr o} - o)
During the execution of the XORNBS instruction, Rx@] /addr | o - o
registers R28 and R27 contain pointers to the bytes Immediate.Quick X - X
within the source and destination bit strings to be immediate X O X
processed next. Following the execution of the lllegal Addressing Mode 86082

instruction, R28 contains the address of the byte
containing the final bit of the source bit string while R27
contains the address of the byte containing the final bit
of the destination bit string.

Condition Codes
CcY oV S Z

CY Unchanged
OV Unchanged
S Unchanged
Unchanged

Instruction Format
Format Vllb

PRELIMINARY INFORMATION

7-122

— Unavailable Addressing Mode

Exceptions
None

1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Section 8
Interrupts and Exceptions

This section describes the interrupt and exception handling capabilities of the uPD70616 microprocessor.

An interrupt is an event which occurs asynchronously to the operation of the pPD70616 while an exception is an
event which occurs as a direct result of program execution. When an interrupt or exception is recognized, the program
is suspended and control is transferred to an interrupt or exception handler. Processing of interrupts and exceptions
is similar but differ slightly in the operation of the interrupt enable flag and the stack pointer used during interrupt or
exception processing.

Reset is a special type of exception. When reset occurs, all processor activity is stopped and the processor is
initialized to the reset state.

System Base Table

When an interrupt or exception is recognized, the SBT (System Base Table) is used to locate the appropriate vector.
The SBT consists of 256 entries each containing a vector to an interrupt or exception handler. An SBT entry consists
of a 32-bit virtual address in the virtual address mode. In the physical address mode, an SBT entry consists of a 24-bit
physical address with the high order eight bits being ignored by the uPD70616.

The SBT is located in the memory address space aligned on a page (4KB) boundary by the SBR (System Base
Register). The first 64 SBT entries (0-63) are reserved for use by pPD70616 interrupts and exceptions. The
remaining 192 entries (64-255) are available in user applications as maskable interrupt vectors.

Figure 8-1. System Base Table Entry

31 2 0
T T T — T T T T 7 T T T

|l T T T T T T v T T T T Y T

Interrupt/Exception Handler Address 0l0

86-235

The starting address of an interrupt/exception handler must be aligned on a word boundary.

1.0 8-1 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS : uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 8-2. System Base Table (SBT)

vector offset
255 +1020
Application Interrupt Vectors
(Maskable Interrupts)
64 +256
63 Software Trap 15 +252
62 Software Trap 14 +248
61 Software Trap 13 +244
60 Software Trap 12 +240
59 Software Trap 11 +236
58 Software Trap 10 +232
57 Software Trap 9 +228
56 Software Trap 8 +224
55 Software Trap 7 +220
84 Software Trap 6 +216
53 Software Trap 5 +212
52 Software Trap 4 +208
&1 Sottware Trap 3 +204
50 Sottware Trap 2 +200
49 Software Trap 1 +196
48 Software Trap 0 +182
47 +188
RFU
33 +132
32 Emulation Mode Exception +128
3 RFU +124
30 RFU +120
28 Asynchronous Task Trap +116
28 Asynchronous System Trap +112
27 Change to Execution Level 3 +108
26 Change to Execution Level 2 +104
25 Change to Execution Level 1 +100
24 Change to Execution Level 0 +96
23 Decimal Arthmetic Exception +92
22 Floating Point Arithmetic Exception +88
21 Integer Arithmatic Exception +84
20 lilegal Data Field Exception +80
19 llegal Addressing Mode Exception +76
18 Reserved Addressing Mode Exception +72
17 Privileged Instruction Exception +68
16 Reserved Opcode Exception +64
15 RFU +60
14 Address Trap +56
13 Instruction Breakpoint Exception +52
12 Instruction Trace Exception +48
11 Address Translation Exception +44
10 Memory Protection Exception +40
9 Page Not Present Exception +36
8 Area Not Present Exception +32
7 . Stack Invalid Exception +28
6 RFU +24
[RFU +20
4 System Fautt +16
3 Serlous System Fault +12
2 Non--Maskabie Interrupt +8
1 Bus Freeze +4
0 i L.e— System Base Register (SBR)

PRELIMINARY INFORMATION 8-2 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Interrupt and Exception Processing

When an interrupt or exception is recognized, the following actions are performed and control is transferred to the
specified interrupt/exception handler.

() PSW.EL « 00 (Note 1)
(i) ~ PSW.IE flag modification

* interrupt........... PSW.IE « 0 (maskable interrupts disabled)
= exception......... PSW.IE unchanged (Note 2)
(i) PSWTE«O0
PSW.TP « 0
PSW.AE « 0

(iv) PSW.EM « 0 (native mode)
(v} PSW.ASA « 1 (Note 3)
(vij temp « SBT][vector]

(vii) interrupt/exception information is stored on the stack

* interrupt........... IS (ilnterrupt stack)
» exception......... LOSP (Note 4)

(viij PC «temp

The contents of the stack following an interrupt or exception is shown in Figure 8-5.

Figure 8-3. Interrupt/Exception Stack Format

« Interrupt
31 0
PSW
Addresses PC <+— SP
"
« Exception
31 0
Exception Parameter
Exception Code Parameter Count
Addresses PSW
PC «— SP
86-238

The parameter count indicates the number of bytes of exception information in addition to the PC and
PSW in the exception data. It is used by exception handlers to determine the number of bytes to
discard from the stack following the processing of the exception.

Nole T Trthe excaption is caused by the CHLVL instruction or an Asynchronous Task Trap then the specified execution level is set.
Note2 Bus error and level stack invalid exceptions will disable maskable interrupts.

Note3 If an ATT (Asynchronous Task Trap) occurs then Asynchronous System Trap is enabled.

Note4 If the previous stack was the interrupt stack then the IS is continued to be used.

1.0 8-3 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS

The value of the PC placed on the stack varies depending on the type of exception as follows:

- An exception during the execution of an instruction stacks the PC of the instruction
causing the exception (Current PC).

- An exception following the execution of an instruction stacks the PC of the instruction
immediately following the instruction which caused the exception (Next PC).

Interrupts

Interrupts are requests for service from external devices and include the fault interrupt, non-maskable and maskable
interrupt input signals. Following the acknowledgement of an interrupt, the PC and PSW are saved on the interrupt
stack and program control is transferred to the predesignated or supplied vector at execution level 0.

(i)

Fault Interrupt

The fault interrupt is used in systems employing functional redundancy monitoring (FRM). If a fault
interrupt is detected, the pPD70616 enters the halt state and the address and data buses are placed
in the high impedance mode. Actual processing of the fault interrupt is delayed until after the fault
interrupt input is negated.

During the processing of a fault interrupt, non-maskable interrupts are disabled.

Non-Maskable Interrupt (NMI)

Non-maskable interrupts are used to signal the occurrence of catastrophic events such as a loss of
power. Non-maskable interrupts cannot be masked by software.

Another non-maskable interrupt will not be acknowledged until the processing of the first NMI
completes and the RETIS instruction is executed.

(iliy Maskable interrupt (Ml)

Maskable interrupt requests are generated by an external interrupt controller. A privileged program
can control the recognition of maskable interrupts by the means of the IE (Interrupt Enable) bit in the
PSW register.

Following the occurrence of a maskable interrupt, further maskable interrupts will be disabled until the
PSW.IE is again set.

Exceptions
Exceptions are divided into the following categories:

Serious System Exceptions
System Exceptions

Stack Invalid Exceptions
Memory Management Exceptions
Software Debug Exceptions
Instruction Exceptions
Arithmetic Exceptions
Change Execution Level
Asynchronous Traps
Emulation Mode Exceptions
Software Traps

uPD70616 PROGRAMMER'S REFERENCE MANUAL

A list of the possible uPD70616 exceptions and their associated exception stack formats can be found in Table 8-1

PRELI

MINARY INFORMATION 8-4

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

uPD70616 Exception Processing

The complete set of exception conditions are described below. For each possible exception, a short summary of the
exception and the control flow for correcting and recovering from the exception is presented.

Serious System Faults
Serious system faults are potentially catastrophic events such as a bus error. When a serious system fault is detected,
the exception information is pushed onto the interrupt stack and control is transferred to the serious system fault
exception handler.

= Bus Error

A bus error indicates that a memory or I/O bus cycle has failed and that external hardware is unable to correct
the fault.

In the case of a bus error, the exception address stored on the stack is the physical address that generated
the exception. Both maskable and non-maskable interrupts are disabled during the execution of the bus error
exception handler until the RETIS instruction is executed.

When a bus error involves the interrupt stack or a second bus error occurs during the processing of the initial
bus error, the situation is deemed unrecoverable and the processor will halt.

System Faults
?System faults are exceptions which occur as a result of external events. When a system fault occurs, the exception
information is pushed on the interrupt stack and control is transferred to the system fault exception handler.

+ Invalid Interrupt

An invalid interrupt exception occurs when an external interrupt controller supplies a system base table vector
in the range of 0 to 63. These interrupt/exception vectors are reserved for system use and attempted use will
result in an exception.

Stack Invalid Exceptions

It is necessary to avoid additional exceptions during the processing of an exception. Exceptions involving the level 0
stack and double exceptions are included in this category.

« Level 0 Stack Invalid

A level 0 stack invalid exception occurs when a memory management exception is generated when
attempting to access the level 0 stack. Because other exceptions normally use the level 0 stack during
exception processing, this exception must be handled differently.

When a level 0 stack invalid exception occurs, the stack is switched to the interrupt stack and the level 0 stack
invalid exception handler is entered to process the exception.

« Double Exceptions

When an exception occurs, the stack is switched to the level 0 stack (or other stack in the case of an
asynchronous task trap or change execution level exception) and the exception information is saved. A
double exception occurs if another exception is encountered while saving the exception information from the
first exception on the stack.

1.0 8-5 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS

When a double exception occurs, the stack is changed to the interrupt stack and the double exception
information is stored together with the information from the first exception. The exception handler must then
make the stack accessible and copy the first exception information from the interrupt stack to the invalid stack.
The RETIS instruction will automatically transfer control to the first exception handler since the return address
in exception frame contains the entry point of the first exception handler.

A bus error during the exception information saving will be processed as a bus error and the first exception
disregarded.

Memory Management Exceptions

Memory management exceptions are divided into three separate types. Not present exceptions occur when a
needed address translation table is not present in memory and must be brought in from secondary storage.
Protection exceptions are detected when an instruction attempts to access a location without first having established
the proper permissions. Translation exceptions occur when an invalid or out of range translation table entry is
referenced during the address translation process.

nPD70616 PROGRAMMER'S REFERENCE MANUAL

Memory management exception handlers have the option of restarting the faulted instruction or terminating the task if
the fault cannot be corrected.

Area Not Present
Page Not Present ¢

These exceptions occur if the area table entry or page table entry has a cleared P (Present) bit. The exception
handler must read in the area or the page from secondary storage and restart the instruction by executing the
RETIS instruction.

Read Access Violation
Write Access Violation
Read/Write Access Violation
Execute Access Violation
1/0 Access Violation

Access violations occur when the faulted instruction does not have the proper permissions to complete the
access. Read, write and execute permissions are checked at both the area and page levels and an access
violation will occur if: :

« The present execution level is less than the specified ATE access level for the access.
PSW.EL > { RDL, WRL, EXL }
+ The page level permission for the access type is disabled.

An /0 access violation will occur if an access crosses a page boundary and the pages are mapped in different
address spaces.

The exception handler processes protection faults by aborting the task or changing the access permissions
and restarting the instruction.

PRELIMINARY INFORMATION 8-6

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Invalid Section

Section Length Violation
Invalid Area

Area Length Violation
Invalid Page

Invalid translation faults occur when a section, area or page is marked as not valid. in addition to the validity

check, a length check is made on sections and areas to determine if the access exceeds the defined length of
the section or area.

The ATBR (Area Table Base Register) and the area table entries and page table entries all contain a V (Valid)
bit which the memory management unit uses to determine if the translation is valid. The ATLR (Area Table
Length Register) and ATE also contain a length parameter that defines the total size of the section or area.
These entries are used to determine if an access beyond the defined region would take place.

The exception handler must either abort the task or allocate additional memory resources and restart the
instruction.

Instruction Exceptions
Instruction exceptions involve improper use of an instruction, operand or addressing mode. The exception handler is
responsible for analyzing the cause of the fault and either aborting the task or emulating the instruction .

Instruction exception are detected before the instruction executes and the exception information contains the PC of
the instruction causing the fault.
» Reserved Opcode
Reserved opcode exceptions occur when an attempt is made to execute an opcode which is not assigned a
valid instruction.

These opcodes are reserved for future instruction set extensions.

» Reserved Addressing Mode
Reserved opcode exceptions occur when an attempt is made to use a reserved addressing mode.

These addressing mode encodings are reserved for future extensions to the addressing modes.

« lllegal Instruction Format

If an instruction encoding cannot be decoded into one of the seven instruction formats, an illegal instruction
format exception will occur.

« lllegal Addressing Mode

An illegal addressing mode exception occurs when a valid addressing mode is used improperly. An example
of an illegal addressing mode exception is an attempt to use an immediate addressing mode as the destination
operand in an instruction.

» Privileged Instruction
A privileged instruction exception will occur if an attempt is made to execute a privileged instruction at an
executian level other than level 0.

1.0 8-7 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS uPD70616 PROGRAMMER'S REFERENCE MANUAL

« lllegal Data Field

An illegal data field exception occurs when an error is detected in the size of an operand. For example, the bit
field data type can range in length from 0 to 32 bits. Should a length greater than 32 bits be specified, an
illegal data field exception will occur.

Arithmetic Exceptions

Arithmetic exceptions occur as a result of arithmetic operations. Three different classes of exceptions are supported
for each of the integer, floating point and decimal data types.

Integer Exceptions

+ Integer Zero Divide

A zero divide exception occurs when a divisor of zero is used in a divide or remainder instruction. A zero
divide exception sets the PSW.OV flag and leaves the destination unmodified.

« Integer Overflow

Integer overflow occurs when the result of an operation cannot be expressed in the precision of the
destination. An integer overflow exception is caused by executing the BRKV.instruction with the PSW.QV
flag set.

Floating Point Exceptions

+ Floating Point Zero Divide

A floating point zero divide exception occurs when zero is used as divisor, except in the of case of 0 + 0 which
is an invalid floating point operation. The PSW.FZD flag will be set if a zero divide takes place.

Floating point zero divide exceptions are enabled by the TKCW.FZT bit. If this bit is set, then the exception
will occur immediately and the destination will remain unchanged. If zero divide exceptions are disabled, an
infinite result will be placed in the destination operand and program execution will continue.

+ Floating Point Overflow

« Floating Point Underflow
Floating point overflow and underflow exceptions occur when the destination operand is incapable of
representing the magnitude of a floating point result.

When floating point overflow occurs, the PSW.FOV flag is set. An overflow exception will occur immediately if
the TKCW.FOT bit is set or will be delayed and an infinite result will be placed in the destination operand.

When floating point underflow occurs, the PSW.FUD flag is set. An underflow exception will occur
immediately if the TKCW.FUT bit is set or will be delayed and a denormal result will be placed in the destination
operand.

PRELIMINARY INFORMATION 8-8 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

When exceptions are enabled, the overflow/underflow condition will result in an immediate exception. If the
exception occurs as a result of a arithmetic operation, a corrected exponent is stored in the destination
operand. Overflow/underflow exceptions caused by a data type conversion instruction will leave the
destination operand unchanged.

Short Reals Long Reals
Overflow -192 —1536
Underflow +192 +1536

« Floating Point Precision

A floating point precision exception occurs when the result of an arithmetic or data type conversion operation
cannot be exactly expressed in the precision of the destination operand and must be rounded.

When a precision exception occurs, the PSW.FPR bit is set and the exception will occur if the TKCW.FPT bit is
set. The rounded result will stored in the destination operand regardless of the state of the TKCW.FPT flag.

» Invalid Floating Point Operation
An invalid floating operation exception will occur if one of the following operations is attempted:

0+0
normal + denormal
denormal + denormal

The PSW.FIV flag will be set as a result of an invalid operation. If the exception is enabled, the destination
operand remains unchanged. If disabled, a QuietNaN is stored in the destination and execution continues.

» Reserved Floating Point Operand
A reserved floating point operand exception occurs when a NaN or infinity is used as the operand in an

instruction. The destination operand is unchanged as a result of this exception.
Decimal Exceptions

« Decimal Format

A decimal format exception occurs when the result of a decimal arithmetic operation or data type conversion is
not a valid BCD representation.

Software Debug Exceptions

« Instruction Trace

When enabled, instruction trace exceptions occur following the execution of each instruction. Because of the
possibility of multiple exceptions and the subsequent restart of an instruction, the TE (Trace Enable) flag is
supplemented by the TP (Trace Pending) flag.

Prior to entering the exception handler, both the PSW.TE and PSW.TP fields are cleared.

« Instruction Breakpoint
An instruction breakpoint exception occurs when the BRK instruction is executed.

1.0 8-9 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS nPD70616 PROGRAMMER'S REFERENCE MANUAL

The PC image in the exception information contains the address of the instruction breakpoint. This allows the
exception handler to restart the instruction following the removal of the breakpoint.

» Address Trap

An address trap occurs when an access occurs that meets the trap conditions in either of the two address trap
registers and address traps are enabled in the PSW. Address traps are controlled by the following registers:

» TRMOD-—-—- access types
« ADTR———— trap base address
« ADTMR————+ trap address range

The AE (Address Trap Enable) flag in the PSW is cleared before entering any interrupt or exception handler.
The exception handler can determine which address trap occurred by examination of the address trap
exception code.

Figure 8-4 Exception Detection Sequence

ﬁ |)

Before instruction execution:

= Trap if PSWTP =1
* PSW.TP <- PSW.TE

Execute the instruction

After instruction execution:

« Check for simultaneous exceptions and
and nest the exception information

« PSW.TP «<-- 0 if the instruction must be restarted

! J

PRELIMINARY INFORMATION 8-10

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Change Execution Level Exceptions ‘ ' e

The change execution level exceptions are provided to allow unprivileged tasks access to system functions and
devices in a controlled manner.

» Change to Execution Level 0
« Change to Execution Level 1
= Change to Execution Level 2
» Change to Execution Level 3

The stack is switched to the execution level specified in the instruction and the exception information is
saved. The second operand of the instruction is zero extended to word length and used as the exception
parameter.

Asynchronous Traps

Asynchronous traps are used to notify the system or a task of the occurrence of an important event. Asynchronous
traps are important in the design of operating systems because the trap can be immediate or may be delayed until a
specified execution level is reached. Two types of asynchronous traps are supported. The AST (Asynchronous
System Trap) is used to inform the operating system of an event while the ATT (Asynchronous Task Trap) is used to
inform a task of an event.

Asynchronous traps are detected by the RETIS/RETIU instructions. During the execution of these instructions, the
SYCW.AST and TKCW.ATT fields are compared with the execution level of the destination. If the new execution level
is greater or equal to the AST/ATT level the asynchronous trap will occur.’

Asynchronous system and task traps operate similarly but differ slightly in the execution level of the trap handler.

Trap Execution leve! after the trap
AST levei 0
ATT level determined by the ATT
AST/ATT Level
0 0 O.evvvennneenn, level 0 AST/ATT
0 0 1o, level 1 AST/ATT
0 1 O.vveerennn level 2 AST/ATT
0 1 1., level 3 AST/ATT
1 0 Ouvveeereennnen, AST/ATT disabled
1 0 1o AST/ATT disabled
1T 1 Oueeerrrinns AST/ATT disabled
1T 1 1 AST/ATT disabled

» Asynchronous System Trap
The AST (Asynchronous System Trap) is a means of informing the operating system of events. When an
interrupt or exception occurs, it is desirable to minimize the time that interrupts are disabled. The exception
handler need only set the AST level to the user level and exit. When control is return to the user level the AST
will occur and the operating system entered. This technique simplifies the software interface between
interrupt/exception handlers and the operating system.

Following the detection of an AST, the execution level is changed to level 0 and control is transferred to the
AST handler.

1.0 8-11 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS nPD70616 PROGRAMMER'S REFERENCE MANUAL

An asynchronous system trap will be disregarded while the PSW.ASA field indicates an earlier AST is being
serviced.

« Asynchronous Task Trap

The ATT (Asynchronous Task Trap) is a means for entering user trap handlers. Because user trap handlers
cannot be allowed to execute at level 0, the ATT is a means to permit task specific trap handlers to execute at
non-privileged execution levels. Applications of asynchronous task traps include activation of task exception
handlers or task termination processing.

Following the detection of an ATT, the execution level is changed to the leve! specified by the TKCW.ATT
field and control is transferred to the ATT handler.

During context switching, the ATT is stored as part of the task context in the TCB by the STTASK instruction
and loaded from the TCB by the LDTASK instruction.

Asynchronous task traps are disregarded when:
+ an AST and ATT occur simultaneously,
+ the PSW.ASA field indicates an AST is being serviced,
¢ the PSW.ATA field indicates an ATT is being serviced.

Emulation Mode Exceptions

Emulation mode exceptions are exceptions which occur during the execution of emulation mode programs. Following
the detection of an exception, the emulation mode PC is pushed on the stack and native mode is enabled to process
the exception. The exception handler must examine the exception parameter and determine the correct method of
emulation for each instance.

« Emulation Mode Privileged Instruction

The emulation mode system instructions listed below have been made privileged to allow operation in a
protected environment:

IN*, OUT", INM, OUTM, HALT
BRK, RETI, POP PSW", El, DI

The PC stored with the exception information is the address of the byte immediately following the first byte of
the instruction causing the exception.

« Emulation Mode Reserved Opcode

This exception occurs if a reserved but unimplemented opcode is attempted to be executed. Included in the
list of reserved opcodes is the BRKEM (Break for Emulation) instruction.

The PC stored with the exception information is the address of the byte immediately following the first byte of
the instruction causing the exception.

» Emulation Mode Zero Divide
A zero divide exception has occurred in emulation mode.

The PC stored with the exception information is the address of the next instruction.

*Conditionally trapped, see Section 10 for details.

PRELIMINARY INFORMATION 8-12 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Emulation Mode Single Step Trap
This exception occurs when an instruction executes and modifies the emulation mode PSW2.BRK flag.

The PSW2 BRK flag has no effect on single step and the native mode PSW.TE flag must be used to single
step emulation mode programs.

Emulation Mode Overflow
This exception occurs when the emulation mode BRKYV instruction is executed with the PSW2.0V flag set.

Emulation Mode Index

This exception occurs when the emulation mode CHKIND (Check Index) instruction is executed and the array
index is found to be out of range.

Emulation Mode Coprocessor Not Present

This exception occurs if an FPO1 or FPO2 instruction is executed and an external coprocessor is not
connected. ’

Software Traps
Software traps are an implementation dependent method of implementing user traps.

1.0

Software Trap 0 - 15
When the condition field in a TRAP instruction and the PSW is satisfied, the specified software trap will occur.

8-13 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS nPD70616 PROGRAMMER'S REFERENCE MANUAL

InterruptException Stack Formats

Figure 8-5. pPD70616 Interrupt/Exceptions
(the @ symbol indicates a pointer value)

Bus Freeze Interrupt = ADOI s Interrupts Disabled

#1 Bus Freeze Interrupt
+4 PSW
[} PC (Current PC)
06-266
Interrupt = CONLINUG = Interrupts Disabled
#2 Non-Maskable Interrupt
#64-255 Maskable Interrupts 4 i
0 PC (Next PC)
86-267
Serious System Faults = ADO s Interrupts Disabled
#3 Bus Fault 12 E ion Add
(Note : The exception address is a physical address) * xception ress
+8 Exception Code 8
+4 PSW
0 PC
86-240
System Exceptions = Abort/ Ignore == Interrupts Disabled
#a System‘ Fault +8 Exception Code 4
Invalid Interrupt
+4 PSW
0 PC
86-241

PRELIMINARY INFORMATION 8-14 1.0

nPD70616 PROGRAMMER'S REFERENCE MANUAL

INTERRUPTS AND EXCEPTIONS

Leve! 0 Stack invalid ma AbOrt / Retry m= Interrupts Disabled
#7 Level 0 Stack Invalid
Single Exception +12 Exception Address
+8 Exception Code 8
+4 PSW
[} PC (Current PC)
Double Exception
+16 First Exception Information
+12 Exception Address
+8 Exception Code 8
+4 PSW
0 @ First Exception Handler
86-242
Memory Management Exceptions == Rerty / Abort ==
#8 Area Not Present Exception 12 .
#9 Page Not Present Exception * Exception Address
#10 Memory Management Exceptions +8 Exception Code 8
VO Access Violation
Read Access Violation +4 PSW
Write Access Violation 0 PC (Current PC)
#11 Address Translation Exceptions %343
Invalid Section
Section Length Violation
Invalid Area
Area Length Violation
Invalid Page
1.0 8-15 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS

nPD70616 PROGRAMMER'S REFERENCE MANUAL

Software Debug Exceptions = CONLNUG =
#12 Instruction Ti E ti
sirue race txcaption +8 Exception Code 4
+4 PSW
0 PC (Next PC)
#13 Instruction Breakpoint Exception 8 Exception 4
+4 PSW
0 PC (Current PC)
#14 Y T
Address Trap +12 PC (Current PC)
+8 Exception Code 8
+4 PSW
0 PC (Next PC)
36-244
Instruction Exceptions = Abort/ Emulate ==
#16 Reserved Opcode R
#17 Privileged Instruction +8 Exception Code 4
#18 Reserved Addressing Mode +4 PSW
#19 llegal Addressing Mode
llegal Instruction Format 0 PC (Current PC)
86-245
#20 liegal Data Field
PRELIMINARY INFORMATION 8-16

1.0

HPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Arithmetic Exceptions == Abort / Continue

#21 Integer Exceptions
Zero Divide +12 PC (Current PC)
Overfiow . +8 Exception Code 8
#22 Floating Point Exceptions +4 PSW
Zero Divide
Overflow o PC (Next PC)
Underfiow 96246
Precision

Invalid Floating Point Operation
Reserved Floating Point Operand

#23 Decimal Exceptions
Decimal Format

Change Execution Level Exceptions == CONtinue ==

#24 Change to Execution Leve! 0
#25 Change to Execution Level 1
#26 Change to Execution Level 2 +8 Exception Code 8
#27 Change to Execution Level 3

+12 Parameter

+4 PSW
0 PC (Next PC)
86-247
Asynchronous Traps w CONLINUE ==
#28 Asynchronous System Trap 1 -
#29 Asynchronous Task Trap +8 | Exception Code 4
+4 PSW
0 PC (Next PC)
86-248
Emulation Mode Exceptions == Abort/ Continue ==
#32 Emulation Mode Exceptions
Privileged Instruction +2 PC (Current PC)
Reserved Opcode +8 | Exception Code 8
Zero Divide
Single Step Trap +4 PSW
Overflow 0 PC (Next PC)
Array Bounds
: 86-249

CP Not Present

1.0 8-17 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS nPD70616 PROGRAMMER'S REFERENCE MANUAL
Software Traps e CONtINUG =
#48-63 Software Traps Exception Code
PSW
PC (Next PC)
86-250
PRELIMINARY INFORMATION 8-18

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS
Exception Codes
Table 8-1. pPD70616 Exception Codes
Code Serious System Exceptions Code Software Debug Exceptions
0301 string data write bus error 0CO00 | instruction trace
0303 | fixed length data write bus error 0DO0O0 | instruction breakpoint
0305 | translation table write bus error OEO1 address trap 0
0309 | string I/O write bus error OE02 | addresstrap 1
030B | fixed length I/O write bus error OEO03 | address traps 0 and 1
0311 string data read bus error
0313 | fix Ienbgatlh datgl read 5"{,5 error Instruction Exceptions
0314 system base table read bus error . :
0315 translation table read bus error }(1)88 rerﬁ/eilwegdl?:;;?g:lt?gn
0317 | instruction fetch bus error 1200 ?eser?/ged addrecs ode
0319 string I/O read bus error 1300 | illegal addressing mode
0318 | fixed length l/O read bus error 1301 illegal instructiongformat
031E interrupt vector read bus error 1400 illegal data field
System Exceptions Arithmetic Exceptions
0400 | illegal interrupt 1500 | integer zero divide
Stack Invalid Exceptions 1501 | integer overflow
1601 floating point precision these exception codes can
8_7/8(1) area not presentt —_ } ggi ﬁoating point undg:’ﬂow cpmt;me in the case of
page not presen oating point overflow simultaneous exceptions
0702 I/O access violation 1608 | floating point zero divide
0703 read access violation 1610 invalid floating point operation
0704 | write access violation level 0 stack invalid 1680 | reserved floating point operand
y 8705 readl/grite access violation e fnvaf 1780 | decimal format exception
707 invalid section
0708 section length violation Change Execution Level Exceptions
8;82 Qr\g'?era\;ﬁ violation 1800 | change to execution level 0
070B | invalid page] 1900 | change to execution level 1
0780 area not present - 1A00 | change to execution level 2
0781 i:»age not%resent 1B00 | change to execution level 3
0782 /O access violation
0783 read access violation Asynchronous Traps
0784 | write access violation doubl " 1C00 | asynchronous system trap
0785 | read/write access violation oubte exception 1D00 | asynchronous task trap
0787 invalid section
0788 sect:%n length violation Emulation Mode Exceptions
0789 invalid area : o - -
g 2000 emulation mode privileged instruction
078A | area length violation 2001 emulation mode ?eserv%d instruction
0788 | invalid page gggg emu:atjon moge z‘eroI divide
Memory Management Exceptions emulation mode single step trap
2004 emulation mode overflow
0800 area not present 2005 emulation mode index
0901 ?age not present 2006 emulation mode coprocessor not present
0A02 /O access violation
0203 read access viollaltion Software Traps
0A04 write access violation
0AQ5 | read/write access violation g?gg 23%3?3 }::S ?
0A06 execute access violation 3200 software trap 2
0B07 | invalid section . ‘
0B08 | section length violation H H
0582 invalifi areﬁ olati i
0 area length violation
0BOB | invalid page 3FC0 software trap 15
86-251
1.0 8-19 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS uPD70616 PROGRAMMER'S REFERENCE MANUAL

Reset

The pPD70616 is reset when the RESET input pin is asserted. When reset occurs, internal registers and bus
interface are initialized and enter the reset state. Following the negation of RESET, the pPD70616 will begin program
execution at address OFFFFFFFOH.

Following reset, the processor is in the physical address mode using the native mode instruction set. The program
execution level is set to level 0 using the interrupt stack and maskable interrupts are disabled. The internal state
following reset is shown in Figure 8-6.

Figure 8-6. uPD70616 Reset State

Register Contents
PC ' FFFFFFFOH
PSW 10000000H
RO - R31 Undefined
LOSP - L3SP, ISP Undefined
SYCW 00000070H
TKCW 0000E000H
SBR 00000000H
TR Undefined
ATBRO - ATBR3 Invalid
ATLRO — ATLR3 Undefined
ADTRO/1, ADTMRO0/1, TRMOD Undefined
PsSw2 0000F002H

PRELIMINARY INFORMATION 8-20 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

InterruptException Nesting

Multiple interrupts and exceptions can occur simultaneously. In the event of muttiple exceptions or interrupts, the
LPD70616 assigns each a priority and nests the exception information on the stack according to the priorities of each
interrupt or exception.

In general, when nesting multiple exceptions, the exception stack frames are pushed onto the stack in order of
increasing priority while the processing of the exceptions will occur in order of decreasing pricrity. When stacking
multiple exception information, the first PC pushed on the stack is a pointer to the current or next instruction.
Subsequent PC images are pointers to the exception handlers to be executed in order of their priority.

There are some cases which are handled slightly differently than described above:

« If a reset, bus freeze or serious system exception occurs, all other interrupts and exceptions are ignored.
Reset is the highest priority event and takes precedence over all other interrupts and exceptions.

« If a maskable and non-maskable interrupt occur simultaneously, only the non-maskable interrupt will be
recognized. The servicing of the maskable interrupt condition will delay until the completion of the non-
maskable interrupt handler.

» An address trap will be ignored if it occurs in conjunction with an exception that will restart instruction
execution.

 An instruction trace exception will be ignored if it occurs in conjunction with an exception that will restart
instruction execution. The instruction trace exception frame is not stored and the PSW field in the other
exception frame will have the TP (Trace Pending) bit cleared, preventing an instruction trace exception
from occurring when the instruction is restarted.

» Memory management exceptions are not nested with other exceptions. If a memory management
exception or address trap occurs simultaneously with a maskable interrupt, it will be ignored and the
instruction later restarted.

Table 8-2 is a complete list of the combinations of simultaneous interrupts and exceptions. !n this table, interrupts and
exceptions are listed across the top and down in order of increasing priority. The action taken in the case of two or
more simultaneous interrupts or exceptions can be determined by finding the first exception in the top row and
reading down until the column intersects the desired interrupt/exception.

For example, in the case of the instruction trace exception, an arithmetic exception, address trap, maskable and non-
maskable interrupt will all be recognized and serviced in order of priority. |f an instruction/memory management
exception or a serious system fault, bus freeze or reset interrupt occur, the instruction trace exception will be ignored.

1.0 8-21 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS pPD70616 PROGRAMMER'S REFERENCE MANUAL

Table 8-2. Multiple Interrupt/Exception Processing

Increasing Priority ——————»

Interrupt/Exception | A | | AIM[N|S]|]B]|R
RIN|M|D|IIM|E|FI}E
Possible L|S{E]: F[R]B|S
h TIT T I 1E}E
Simultaneous HIR R zZl T
Interrupts/Exceptions
SINGLE oBN BN BEcENoREoRN BN BN J
ARITH -|-1O0OjO0O|0C|@®|l@®}|@®
INSTR -|*%{O0OjOCl@®@|@®@|®
MME | O1O0O|O|e®}|e®
; .
"g’,?;f{;‘g AD-TR O{OCje|e|@®
Mi [N BN NN)
NMi oo e@
‘L SERI e|le
BFREZ ®

£
¢

TRACE... Instruction Trace Exception

ARITH.....Arithmetic Exception, Change Level Exception, Asynchronous Trap,
Emulation Mode Exception, Software Trap

INSTR..... Instruction Exception, Instruction Breakpoint Exception

MME....... Memory Management Exception

AD-TR.....Address Trap

Mi............ Maskable Interrupt, lllegal Interrupt

NML........ Non-Maskable Interrupt

SERL....... Serious System Exception

BFREZ....Bus Freeze Interrupt

RESET....Reset

[J Both exceptions are recognized and are serviced in order of priority.

............. The higher priority interrupt/exception is serviced and the lower priority
exception is ignored.

e The occurrence of both exceptions is not possible.

Ko The lower priority exception is serviced and the higher priority exception is
ignored.

PRELIMINARY INFORMATION 8-22 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Specific examples of interrupt/exception nesting are shown below:

Figure 8-7 Simultaneous Instruction Trace, Arithmetic and Non-Maskable Interrupt Exception Processing

exception parameter
@ Target Program
PSW (TP = 1) M,
S
PC (target program) e z
e
L >~ i

increasing
addresses

diviw r1, 10
Level 0 Stack @
] Maskab‘e Interrupt Handier

Arithmetic Exception Handier // RETIS

PSW (TP = 0)

PC (arithmetic exception handler)

>

interrupt Stack RETIS

86-257
This example shows the operation of the priority selection logic in servicing simultaneous interrupts and exceptions.

1. The first action taken is to push the arithmetic exception frame on the level 0 stack. Because an
instruction trace exception also occurred, the PSW image will have the TP bit set. The TE and TP
fields in the PSW are then cleared during exception processing.

2. Next the stack is switched to the interrupt stack for the storage of the interrupt frame. The PC image in
the interrupt frame is the entry point of the arithmetic exception handler which is scheduled to be
serviced next following the completion of the maskable interrupt handler. The PSW.IE field is cleared
to disable further maskable interrupts.

3. When the maskable interrupt handler terminates, the RETIS instruction pops the interrupt frame from
the interrupt stack and transfers control to the arithmetic exception handler.

4. The arithmetic exception handler is now using the execution level 0 stack. When the exception

condition has been corrected, the arithmetic exception handler executes an RETIS instruction. The
instruction trace handler is then entered since the PSW.TP field is set.

1.0 8-23 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 8-8 Simultaneous Instruction Trace and Page Not Present Exception Processing

exception parameter
S TP @ Target Program
- P,
(2 N""“H..‘ !
PC (tarf rogram -
({target program) —
4 s
’ ‘ mov.w ri, [r2]
Level 0 Stack ®
increasing {
addresses
@

Page Not Present Handler

RETIS

86-258

This example demonstrates the restart of an instruction following a page not present exception and delay of the
instruction trace exception.

1. When an exception requiring the restart of the instruction and an instruction trace exception occur
simultaneously, the instruction trace exception is ignored. The memory management exception
frame is pushed on the level 0 stack with the TP field in the PSW field cleared and the PC image
pointing to the first byte of the instruction. Program control is then transferred to the memory
management exception handler.

2. When the page has been brought back into physical memory, the handler executes an RETIS
instruction. The restored PC returns program control to the faulted instruction and because the
PSW.TP flag is clear, no instruction trace exception will occur.

PRELIMINARY INFORMATION 8-24 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

INTERRUPTS AND EXCEPTIONS

Figure 8-9 Simultaneous Page Not Present and Maskable Interrupt Exception Processing

\ Maskable Interrupt Handler

exception parameter
Target Program
PSW (TP = 1)
PC (target program) !
2 4
mov.w rt, [r0]
Level O Stack
increasing]
addresses
Page Not Present Handler
PSW (TP = 0)

PC (page not present handier)

Interrupt Stack

RETIS

‘/1/ REENS
1©)

86-260

This example shows how the memory management exception is ignored if a simultaneous maskable interrupt occurs.

1. When a page not present exception and a maskable interrupt occur simultaneously, the memory
management exception is ignored and only the maskable interrupt is serviced. The maskable
interrupt frame is pushed on the interrupt stack with the TP field of the PSW cleared. Control is then
transferred to the maskable interrupt handler with further maskable interrupts disabled.

2. The maskable interrupt handler terminates by executing a RETIS instruction, the restored PC and
PSW.TP indicate to restart the instruction that originally caused the page not present exception. The
re-execution of the instruction will again generate a page not present exception which will be
processed as normal memory management exception.

1.0

8-25

PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS pPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 8-10 Simultaneous Arithmetic Exception, Maskable and Non-Maskable Interrupt Processing

exception parameter
@ Target Program
PSW (TP = 1) _—
\..,.
PC (target program) T divw 1, 10
/ ~ . Non-maskablie interrupt Handier
Leve! O Stack ®
increasing
addresses
@ RETIS
Arithmetic Exception Handler Maskable Interrupt Handler
PSW (TP = 0) ® ®
PC (arithmetic exception handier) ,..w"’""'
~ ~ H
Interrupt Stack RETIS RETIS

86289

The final example demonstrates the occurrence of a simultaneous arithmetic exception with both maskable and non-
maskable interrupts.

1. The exception processing begins by stacking the arithmetic exception frame on the level 0 stack.

2. Next, when maskable and non-maskable interrupts occur simultaneously, the maskable interrupt is
ignored and the non-maskable interrupt stack frame is is pushed on the interrupt stack and the NMI|
handler is entered. The return PC on the stack contains the entry point of the arithmetic exception
handler. During the processing of the non-maskable interrupt, maskable interrupts and additional
non-maskable interrupts are disable.

3. When the NMI handler terminates, an RETIS instruction is executed. However, rather than popping
the exception frame from the interrupt stack and entering the arithmetic exception handler, program
control is vectored immediately to the specified maskable interrupt handler.

4. When the maskable interrupt handler terminates, the restored PC transters control to the arithmetic

exception handler. Following the correction of the exception condition, control is returned to the
original program.

PRELIMINARY INFORMATION 8-26 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL INTERRUPTS AND EXCEPTIONS

Interrupt/Exception Stacks

The active stack is determined by the contents of the EL (Execution Level) and IS (Interrupt Stack) fields in the PSW
register as shown below:

EL | IS Selected Stack

00
00
01
10
11

Interrupt Stack (ISP)
Level 0 Stack (LOSP)
Level 1 Stack (L1SP)
Level 2 Stack (L2SP)
Level 3 Stack (L3SP)

o0 0 C =

6261

A program always sees only a single stack pointer regardless of the execution level. The PSW.EL and PSW.IS fields
identify the active stack pointer (SP) and the contents of the active SP point to the top of stack (TOS) element on the
active stack.

The cache of five stack pointer registers (LOSP-L3SP, ISP) are independent of the user SP (R31). The user stack is
switched whenever the execution level changes due to an interrupt or exception. Before changing stacks, the
contents of the SP register are saved back in the contents of the corresponding stack pointer register. Because the
SP is updated by any instruction affecting R31, the contents of the SP and the associated stack pointer register can
differ during the execution of a program.

!Notes

It is possible for the active stack to become invalid due to a memory management exception. the occurrence of this
condition is described below:

(1) Level1/2/3 Stacks Invalid

If the level 1/ 2 / 3 stack becomes invalid, an exception is generated and the execution level changes
to level 0 and the level 0 stack becomes the active stack. Following the correction of the exception
condition the original stack is restored.

If the stack invalid exception occurs during the stacking of exception information from an
asynchronous task trap or change level exception, a double stack exception will occur.

(2) Level 0 Stack Invalid

If the level 0 stack is invalid, a level 0 stack invalid exception is generated and the interrupt stack (ISP)
becomes the active stack.

(3) Interrupt Stack Invalid

If the interrupt stack is found to be invalid, the pPD70616 will halt until reset. For this reason, the
interrupt stack must remain present.

1.0 8-27 PRELIMINARY INFORMATION

INTERRUPTS AND EXCEPTIONS

PRELIMINARY INFORMATION

8-28

uPD70616 PQOGRAMMER'S REFERENCE MANUAL

1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL SOFTWARE DEBUG SUPPORT

Section 9
Software Debug Support

This section describes the software debug facilities of the uPD70616 microprocessor. The size and complexity of 32-
bit systems demands that on-chip hardware contribute to the problem of debugging complex application and system
software. The on-chip software debug support offered by the nPD70616 aids in quickly identifying the errant sections
of a program without spending hours over listings and real-time traces.

Three separate software debug tools covering a wide range of debug strategies are supported:
« instruction trace
« instruction breakpoints
 address traps

Instruction trace is used to slowly execute a program to permit close observation of its behavior. Following the
execution of each instruction, the program is interrupted and the instruction trace exception handler is entered.
Because of the coupling to the pPD70616 instruction set, instruction trace is frequently used to observe and debug
programs at the assembly language level.

Often millions of instructions must be executed to reach the point of interest in a program and single stepping through
each instruction is obviously inadequate. Instruction breakpoints allow real-time execution up to a special instruction
and then cause an exception, allowing the breakpoint handler to regain control of the system and display the program
state.

Both instruction trace and instruction breakpoints address the problems of debugging the instruction stream but are
no help in debugging a section of ROM code or identifying wayward data write operations that can potentially destroy
programs. To aid in the debug of these situations, a new type of hardware debug support known as address trapping
is required. Address traps are the most flexible debugging tool since they combine an address along with an access
type, permitting the hardware to distinguish between read, write and execute accesses anywhere within the virtual
address space and to trap only those accesses which meet the specified trap conditions.

The level of on-chip hardware support for these three debug operations has been hitherto unavailable on any 8-, 16-
or 32-bit microprocessor. This high level of software debug support allows a software debugging tool to perform many
of the tasks previously relegated to expensive in-circuit emulators. The end result is a powerful, low cost means of
designing complex software systems without sacrificing software reliability.

1.0 9-1 . PRELIMINARY INFORMATION

SOFTWARE DEBUG SUPPORT nPD70616 PROGRAMMER'S REFERENCE MANUAL

Instruction Trace

Instruction trace (also referred to as single stepping) is a tool used to force an exception following the execution of
each instruction. Instruction trace allows a software engineer to observe the execution of a program at the instruction
level to locate and correct software errors.

Instruction Trace Control
Instruction trace exceptions are controlled by the TE (Trace Enable) field in the PSW register.

PSW.TE=0 instruction trace disabled
PSW.TE =1 instruction trace enabled

Because this field in the upper halfword of the PSW, a privileged instruction is required to enable and disable
instruction trace.

Instruction Trace Operation

When instruction trace exceptions are enabled, following the execution of each instruction an instruction trace
exception occurs. Prior to entry into the instruction trace exception handler, the PC and PSW are pushed onto the
level 0 stack and the PSW.TE field is cleared to allow the debugger to analyze program execution. To return back to
the target program, the RETIS (Return from Interrupt — System) instruction is used.

Following the occurrence of an instruction trace exception, the level 0 stack contains the following information:

PC of the next instruction
exception code (0COOH)
PSW image

parameter count

Refer to section 8 for the organization of the level 0 stack following an instruction trace exception.

Instruction Tra;:e Pending

As described in section 8, the existence of an interrupt or exception condition is checked following the execution of
each instruction. Because instruction trace is the lowest priority of the many exceptions that can occur, all other higher
priority exceptions will be processed ahead of an instruction trace exception.

The other exceptions that can occur can be classified into those which restart or resume instruction execution and
those which occur after the execution of the instruction is completed. In the latter case, operation of instruction trace
is as described following the correction of the higher priority exception condition. The former case presents a problem
since the instruction has yet to execute and it would be incorrect to process the instruction trace exception after the
higher priority exception condition was corrected and once again after the instruction completes execution.

The solution to this problem is for the uPD70616 to keep track of the exception type so to be able to restart the
instruction and delay the instruction trace exception until the instruction has completed execution. This is
accomplished by the TP (Trace Pending) field in the PSW register.

PSW.TP =0 no instruction trace pending
PSW.TP = 1 instruction trace pending

When the PSW.TP field is cleared, an instruction trace exception is not pending and the instruction is restarted
without servicing the instruction trace exception. If the PSW.TP field is set, either no other higher priority exception
has occurred or the exception occurred after the execution of the instruction was completed and the instruction trace
exception should be honored.

PRELIMINARY INFORMATION 9-2 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL ‘ SOFTWARE DEBUG SUPPORT

Consider the following examples. Suppose that a program is being debugged with the instruction trace mode
enabled and a higher priority exception also occurs.

Case 1 Pre-execution exception

Assume that an instruction makes a memory reference to an non-existent page and causes a page fault.
Because the instruction has not executed and must be restarted, the PSW.TP field is cleared prior to being
pushed on the stack. After the exception information is placed on the stack, instruction trace is disabled and
the memory management exception handler is entered. After the missing page has been brought into
physical memory, the faulted instruction is restarted. Because the PSW.TP field is cleared, the instruction
trace exception is delayed until the instruction completes execution.

Case 2 Post-execution exception

Assume that an integer overflow exception has occurred. Because the instruction has completed execution,
the PSW.TP field is set prior to being pushed on the stack. After the exception information is placed on the
stack, instruction trace is disabled and the integer overflow exception handler is entered. When the integer
overflow handler is finished and executes a RETIS/RETIU instruction, the restored PSW is checked and
because the PSW.TP field is set, an instruction trace exception occurs.

The PSW.TP field is controlled by the puPD70616 microprogram. When an exception occurs that requires the
instruction to restarted or resumed, the TP field in the PSW image pushed onto the stack is cleared and the instruction
trace exception is delayed until the instruction completes execution.

‘UPDPSW.W Instruction
Enable of instruction trace is generally by the RETIS instruction. It is also possible for the privileged UPDPSW.W
instruction to modify the PSW.TE field and enable or disable instruction trace under the following circumstances:

- If instruction trace is enabled and a UPDPSW.W instruction executes and clears the PSW.TE field, a final
instruction trace exception will occur after the completion of the UPDPSW.W instruction.

« If instruction trace is disabled and the execution of a UPDPSW.W instruction sets the PSW.TE field, the
instruction trace exception will not occur until after the completion of the instruction following the UPDPSW.W
instruction.

Instruction Trace Note

A final note on instruction trace operation. If the instruction trace exception handler accidentally enables instruction
trace, an endless sequence of instruction trace exceptions can occur. Exercise caution when writing instruction trace
exception handlers to avoid this situation.

1.0 9-3 PRELIMINARY INFORMATION

SOFTWARE DEBUG SUPPORT pPD70616 PROGRAMMER'S REFERENCE MANUAL

Breakpoint Traps

The instruction breakpoint facility is used to implement program flow debuggingt. An instruction breakpoint is set by
replacing the first byte of an instruction with the one byte BRK instruction. The program then executes at full speed
until the breakpoint is reached and executed causing the breakpoint trap.

Following the occurrence of an breakpoint trap, the level 0 stack contains the following information:

« PC of the current instruction
- exception code (0DOOH)

« PSW image

= parameter count

Refer to section 8 for the organization of the level 0 stack following a breakpoint trap.

Note that only the first byte of a multi-byte instruction needs to be replaced with the BRK instruction. Subsequent
bytes may be left unmodified without causing an exception since the breakpoint trap guarantees the remaining bytes
of the instruction never reach the execution unit.

Also a note of caution concerning infinite breakpoint traps. The setting of an instruction breakpoint within the
breakpoint exception handler will cause repeated breakpoint traps until some other exception occurs and terminates
the sequence of instructions. Exercise caution to avoid this situation.

TFor example, a high level language debugger can set breakpoint traps at the machine instructions corresponding to each line of the
high level language source code.

PRELIMINARY INFORMATION 9-4 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL SOFTWARE DEBUG SUPPORT

Address Traps

Address traps are a powerful debugging facility that combine the occurrence of an address (or range of addresses)
with one or more access types (read, write, execute) to generate an exception. Address traps differ from instruction
trace and breakpoint traps since they operate on data accesses as well as instruction accesses and can span one or
more tasks in a multitasking system.

Address Trap Operation
The setup of a uPD70616 address trap is performed as follows:

* address assignment
Specifies the base address within which address traps will occur. For example, virtual address 10000H
can be used as the base address.

» address mask assignment
This parameter defines the range of addresses from the specified base address that address traps will *
occur. To trap accesses within the virtual page at address 10000H, the range is set to 4096 bytes.

» access type -
This parameter assigns one or more access types to the range of addresses. For instance, if traps are to
occur on write access to the region, write access trapping must be specified.

In the example above, the address trap would be programmed to occur when the following conditions were all
satisfied:

« virtual addresses 010000H-010FFFH
« write accesses

The uPD70616 allows two independent sets (address trap 0 and address trap 1) of address trap specifications to be
defined simultaneously. Address trap specifications can be overlapped or use the same or different access types
without restriction.

Address Trap Registers

Address traps are setup and controlled by three types of privileged registers and a field within the PSW register (refer
to section 3 for detailed register specifications).

» Address Trap Enable (PSW.AE)
The PSW.AE flag is used as a global enable and disable for the address trap logic.

PSW.AE =0 address traps disabled
PSW.AE =1 address traps enabled

Because the AE flag resides in the privileged upper halfword of the PSW only operating system routines
can control the operation of address traps.

« Address Trap Registers (ADTR0/ADTR1)
The two ADTR registers each contain a 32-bit base address used to define a region by the trap logic.
Register ADTRO contains the base address for address trap 0 and ADTR1 contains the base address for
addresstrap 1.

1.0 9-5 PRELIMINARY INFORMATION

SOFTWARE DEBUG SUPPORT uPD70616 PROGRAMMER'S REFERENCE MANUAL

- Address Trap Mask Registers (ADTMR0/ADTMR1)
The ADTMR registers are used to qualify the ADTR registers to define a range of addresses. Each of these
registers contains a 32-bit mask value that identifies the corresponding bits of the ADTR registers as "don't
care". ADTMRO contains the mask value for ADTRO and ADTMR1 contains the mask value for ADTR1.

A limitation applies to the contents of the ADTMR registers. The low order two bits of these registers must
be set in order to operate properly. Failure to heed this restriction will result in UNPREDICTABLE operation.

» Trap Mode Register (TRMOD)
The TRMOD register contains the access type specifiers for each set of ADTR/ADTMR registers. Fields
within the TRMOD contain the following flags:

» read.............. read access to the address causes an address trap 0

Address Tr. o write.............. write access to the address causes an address trap 0
= execute......... execute access to the address causes an address trap 0

* read............ read access to the address causes an address trap 1

Address Trap1 write.............. write access to the address causes an address trap 1
« execute......... execute access to the address causes an address trap 1

Each of the above fields is independently assignable allowing trap conditions such as on read/write or
read/write/execute access to a region. Address traps 0 and 1 can be disabled by simply selecting the no
access condition (i.e., all bits within an access field cleared) in the appropriate field in the TRMOD register.

Address Trap Setup

Setting up for address traps involves programming of the ADTR/ADTMR register pairs, the TRMOD register anc .
enabling address traps in the PSW register. An address trap will occur whenever all of the following conditions have
been met:

1. PSW.AE = 1 (address traps enabled)

2. any of the TRMOD R/WV/E bits are set 2. any of the TRMOD R/W/E bits are set

3. a programmed access type occurs 3. a programmed access type occurs

4. an address region 'hit' occurs 4. an address region 'hit' occurs
Address Trap 0 r rap 1

An address *hit’ occurs when the following condition is satisfied:

[AccessAddress and not(AddressMask)] = [TrapAddress and not(AddressMask)]
For example, to trap on accesses within a 128 byte region, an ADTMR is programmed as follows:

Figure 9-1 ADTMR Setup (128 byte region)

31 0
T T —rT T T T T T Ty T —

0000O0O0OOO0OOOOOOO0OO0OOOOOOOO1T 1T 1 1 1)1}1

86-211

000

PRELIMINARY INFORMATION 9-6 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL SOFTWARE DEBUG SUPPORT

Since the low order two bits of the ADTMR registers must be set, the smallest trap region is four bytes (4B) while
largest trap region (all ADTMR bits set) is four gigabytes (4GB).

Address Trap Generation

Address traps in the uPD70616 occur when any byte within an address trap region is accessed with a specified access
type. The actual occurrence of an address trap is delayed until both the instruction and the access is completed as
follows:

» An execute access address trap is delayed until the instruction is executed. Instructions within the
address trap region which are prefetched but not executed do not cause address traps.

» A read access address trap occurs after the access to the operand has commenced and the read
operation has completed.

« A write access address trap occurs after the access to the operand has commenced and the write
operation has completed.

No priority is assigned in the event of address traps detected simultaneously by each set of address trap logic. An
address trap handler can detect this condition by examining the exception code placed on the level 0 stack by the
processor.

Virtual/Physical Mode Address Traps

Address traps can operate in both the virtual and physical modes of the uPD70616. Address traps in virtual mode
atilize virtual addresses while address traps in physical mode utilize physical addresses.

When operated in the physical mode, the trap address is regarded as a physical address and the high order 8-bits of
the ADTMR registers should be set to match the addresses output on the 24-bit address bus. Failure to mask the
upper 8-bits will result in UNPREDICTABLE operation.

When virtual mode is enabled, the trap address is regarded as a virtual address. No capability is available for trapping of
physical addresses while in the virtual mode.

Address Trap Stack Contents v

When the conditions for an address trap are met, information is placed on the level 0 stack and control is transferred to
the address trap handler. The following information is placed on the level 0 stack:

+ address of the instruction causing the trap (CurrentPC)
« address of the next instruction (NextPC)

+ PSW image

» address trap exception code_

The CurrentPC is used by the exception handler to analyze the instruction which caused the address trap while the
NextPC is used as the return address to continue program execution. After the PSW image is pushed on the stack,
the AE field within the PSW is cleared to disable further address traps. The exception code contains information on
which set of address trap logic detected the access as shown below:

1.0 9-7 PRELIMINARY INFORMATION

SOFTWARE DEBUG SUPPORT nPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 9-2 Address Trap Exception Code Format

31' . . ; . . ‘24 23' . —r : 17 16 15 0
0000111 0j0000O0O0O 0O|b}ja number

bits 0:15 number this field contains the number of bytes placed on the stack

bit 16 a this field contains a flag which indicates if an address trap 0 occurred

a=0 no address trap 0 occurred
a=1 address trap 0 occurred

bit 17 b this field contains a flag which indicates if an address trap 1 occurred
b=0 no address trap 1 occurred
b=1 address trap 1 occurred

bits 18:23 0 reserved field with each bit cleared
bits 24:31 '0E'H address trap exception code

Refer to section 8 for details of the level 0 stack contents following an address trap.

Address Trap Notes
The following are notes on the operation of the nPD70616 address trap facilities.

Memory Indirect Addressing Modes

Address traps can occur during the effective address calculation of memory indirect addressing modes. If a
memory indirect addressing mode is used and during the effective address calculation the access of the memory
resident pointer is within an address trap region with read access enabled, an address trap will occur.

Instruction Trace Operation

It is possible to use the address trap logic to implement a second form of instruction trace. By setting the entire
address space as the trap region and selecting the execute access type, an address trap will occur after the
execution of each instruction.

Infinite Address Traps

Although further address traps are automatically disabled following entry into the address trap handler, an endless
series of address traps can occur if the trap handler re-enables address traps and a memory access meets the
programmed trap conditions.

TLBNF Accesses

The address trap logic is disabled during address translation and system base table accesses. The internal
pPD70616 microprogram will ignore these accesses even if address traps are programmed.

PRELIMINARY INFORMATION 9-8 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL V20/V30 EMULATION MODE

Section 10
V20/V30 Emulation Mode

This section describes the operation of the V20/V30 emulation mode. The V20/V30 emulation mode is included in
the uPD70616 in order to allow system designers to take advantage of the large installed base of 16-bit software while
simultaneously providing an upgrade path to a high performance 32-bit architecture for new applications.

V20/V30 emulation allows the design of a 32-bit system that is object code compatible with software designed for the
uPD70108/116 microprocessors yet offers higher performance. With the exception of some system level instructions
which require software emulation, the entire V20/V30 instruction set is implemented. In addition to the full resources
of the V20/V30 microprocessors, other enhancements of the uPD70616 such as memory management and software
debug mechanisms are available for use in developing and porting 16-bit V20/V30 software.

The software used to complete the V20/V30 architecture is called a virtual machine monitor. In addition to providing
the software handlers for emulation of privileged instructions and processing of exceptions, the virtual machine
monitor is used complete the emulation of the original system environment. System emulation allows programs written
for a different system to execute even if it contains references to physical memory and peripheral devices. Trapping of
l/O instructions and use of the address trap facilities simplify and aid the design of system emulations.

Virtual and Physical Address Modes

Like uPD70616 native mode, V20/V30 emulation mode operates in either virtual mode or physical mode depending
on the state of the VM flag in the System Control Word (SYCW). '

In the physical address mode, the 1MB emulation mode address space is mapped on to the lower 1MB of the 16MB
native mode memory address space. Likewise, the V20/V30 64KB I/O address space is mapped into the lower 64K
bytes of the uPD70616 16MB 1/0 address space. Because there is no address translation in physical mode, the
protection mechanisms are disabled and only a single emulation context can be installed at a time.

Virtual mode V20/V30 emulation provides a number of advantages. With the address translation and protection
mechanisms enabled, any number of native and emulation mode contexts can co-exist without interference. Virtual
mode emulation mode tasks use the lower 1MB of the 4GB virtual address space but now the operating system
through the address translation tables separates and protects each task and the demand paging mechanisms allow
the utilization of secondary storage for complex multi-tasking systems.

In virtual mode, all emulation mode tasks execute at execution level 3. An emulation mode program has all of the
facilities of a similar native mode program except that the address space is restricted. In particular, this applies to
mapping of virtual address on to the I/O address space. Like the native mode instruction set, all emulation mode
instructions are restartable or in the case of the emulation mode block transfer instructions, are interruptable and
resumable.

Emulation Mode

The operating mode of the uPD70616 microprocessor is controlled by the EM flag in the PSW register. During native
mode operation, the EM flag is cleared and the full set of pnPD70616 resources are available to programs. Setting of
the EM bit changes the processor mode to V20/V30 emulation mode and allows the execution of V20/V30 programs
in a demand paged, protected environment.

1.0 10-1 PRELIMINARY INFORMATION

V20/V30 EMULATION MODE pPD70616 PROGRAMMER'S REFERENCE MANUAL

The EM flag is in a privileged field in the upper halfword of the PSW and only software running at execution level 0 can
change processor modes. Because both the flag and the instruction streams must change simultaneously, the
privileged RETIS instruction is used to enter V20/V30 emulation mode.

Figure 10-1. PSW Emulation Mode Specification

31 30 20 28 27 26 25 24 23 19 18 17 16 15 13 12 11 10 9 8 7 4 3 2 1.0
A A T T L] L T T F F F F F LS L] ¥

Ef LTI L|A[T cio
SIT EL RFU RFU 11Z1OfU}P RFU 4
Ala|M|SIPLP E|E|E viplviplr Y|V

Emulation Mode

EM = 0 Native mode
EM = 1 Emulation mode

86-285

Program Status Word (PSW2)

Emulation and native mode utilize independent program status words which are switched automatically when
emulation mode is entered. Separate PSW registers allows the virtual machine emulation to maintain a PSW image
(such as maskable interrupt status) without having to physically mask or unmask interrupts.

While the PSW2 register and V20/V30 PSW appear similar, there are minor differences in the operation of the IE and
BRK flags. In emulation mode, these flags can be in either the set or cleared state but they have no affect on the
operation of the system since maskable interrupts and single stepping are controlled by fields in the native mode
PSW. When an instruction is executed that attempts to change the state of either flag, an exception is generated.
This permits the virtual machine software to intervene and provide a proper emulation of the system function in the
pPD70616 system.

Figure 10-2. Emulation Mode PSW (PSW2)

31 30 16 15 14 13 12 11 10 9 B 7 6 & 4 3 2 1 O
C T L] L T L] T L] L] ¥ T L] L] L} T D ' B A C
T RFU 11|11 |Vv]I E R|Ss|Z]O c 0P |1 v
L R K

J¢————————Emulation mode PSW field —_—

YO trapping control

bit 0 cY The CY (carry) flag indicates if a carry or borrow was generated as a result of the
operation.
CY=0 no carry (borrow) generated
CY=1 carry (borrow) was generated

PRELIMINARY INFORMATION 10-2 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL V20/V30 EMULATION MODE

bit 1 1 Must be set
bit 2 P The P (parity) flag indicates the parity of the lower 8-bits of the result.
P=0 odd parity
P=1 even parity
bit 3 0 Must be cleared
bit 4 AC The AC (auxiliary carry) flag indicates if a carry was generated from the lower nibble to

the upper nibble.
AC=0 no carry

AC =1 carry
bit 5 0 Must be cleared
bit 6 4 The Z (zero) flag indicates if the results of the operation were zero.
Z=0 result is non-zero
Z=1 result is zero
bit 7 S The S (sign) flag indicates if the results are negative (signed) or if the MSB is set
(unsigned).
S=0 result is positive or zero or MSB is 0
S=1 result is negative or MSB is set
bit 8 BRK The BRK (break) flag contains the current single step status for emulation mode

programs. It has no effect on single step operation and must be maintained by the
native mode virtual machine software.

bit 9 IE The IE (interrupt enable) flag contains the current maskable interrupt status for
emulation mode programs. It has no effect on maskable interrupts and must be
maintained by the native mode virtual machine software.

bit 10 DIR The DIR (direction) flag indicates determines the direction of block transfer
instructions.

DIR=0 incrementing addresses
DIR=1 decrementing addresses
bit 11 \ The V (overflow) flag indicates if an overflow occurred.
V=0 no overflow
V=1 overflow
bits 12:15 1 Must be set

bits 16:30 RFU Reserved for future use

1.0 10-3 PRELIMINARY INFORMATION

V20/V30 EMULATION MODE uPD70616 PROGRAMMER'S REFERENCE MANUAL

bit 31 CTL The CTL (/O control) permits selective execution of emulation mode IN and OUT
instructions without generation of an exception.

CTL=0 /0 emulation enabled
CTL =1 I/0 emulation disabled

Program Counter (PC)

The emulation mode PC uses the low order 16-bits of the native mode program counter. Because the address space
is restricted to the lower 1MB of the pPD70616 address space, the high order halfword must be zero.

Figure 10-3. Emulation Mode Program Counter

31 16 15 0
T T T T T T

T T T T T T T T T T T T T T T T

000O0O0OOOOOOOOOOOO PC

86-281

bits 0:15 PC The PC (program counter) field contains the 16-bit emulation mode program counter
bits 16:31 0 Must be zero

IO Emulation Option

The I/O emulation option permits emulation mode programs to override the privileged status of IN and OU”
instructions and permit selective execution of these I/O instructions without the generation of an exception. Thiv
option is controlied by the CTL bit in the PSW2 register as follows:

« CTL=0 IO emulation enabled (I/O instructions privileged)
« CTL=1 IO emulation disabled

Control of the trapping of /O instructions is particularly useful in the design of virtual machine monitors for device
drivers and other software with real-time /O requirements.

Register Allocation

The emulation mode register set uses a subset of the native mode register set with the exception of the emulation
mode PSW which is a physically distinct hardware resource. Since all V20/V30 registers are 16-bits in length,
emulation mode registers occupy the lower halfword of each corresponding 32-bit native mode register.

The emulation mode register set is mapped onto native mode registers R0 through R11. The upper halfword of
registers RO-R7 are unmodified by emulation mode programs. Since the V20/V30 microprocessors use a
segmentation scheme with the segment registers used in the virtual address generation, the upper halfwords of the
four 16-bit segment registers (R8-R11) are significant and must be zero.

In addition to the emulation mode register set, native mode registers R12 through R16 are used by the emulation
facility as working storage and must not be modified by native mode programs. A diagram of the emulation mode
register set is shown below.

PRELIMINARY INFORMATION 10-4 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL V20/V30 EMULATION MODE

Figure 104. Emulation Mode Register Set

Native Mode Emulation Mode_
31 0
R31 (SP) Not used
R30 (FP) Not used
R29 (AP) Not used
R28 Not used
R27 Not used
R26 Not used
R25 Not used
R24 Not used
R23 Not used
R22 Not used
R21 Not used
R20 ’ Not used
R19 Not used
R18 Not used
R17 Not used
R16 " Work register
R15 Work register
R14 Work register
R13 Work register
R12 Work register
R11 Dso
R10 8§S
R9 PS
R8 DSs1
R?7 L\ 4
R6 X
RS) BP
R4 spP
R3 BW
R2 DW
R1 cw
RO AW
31 0
PSW Not used
PC PC
PSW2 PSW

86-213

1.0 10-5 PRELIMINARY INFORMATION

V20/V30 EMULATION MODE uPD70616 PROGRAMMER'S REFERENCE MANUAL

Emulation Mode Instruction Set

The emulation mode instruction set includes nearly all of the V20/V30 instructions with the exception of system
control instructions. The difference between the V20/V30 microprocessors and the V20/V30 emulation mode is that
the system control instructions are considered to be privileged and are trapped and emulated by system software.
This allows the uPD70616 system software to accommodate programs containing these instructions on a program by
program basis without compromising the security of the operating system.

These privileged instructions include functions such as input/output, maskable interrupt control and instruction trace
{single stepping). Instructions in these classes must be emulated relative to a particular system configuration in order
to function properly.

The one exception is for simple I/O instructions. The system programmer has the option of not trapping IN and OUT
instructions and instead allowing them to execute normally. This adds flexibility by allowing programs with real-time 1/O
constraints to function properly albeit in a system with less than full protection. The I/O option is enabled by the CTL
bit in the PSW2 register.

Note that the V20/V30 uPD8080 emulation mode is not supported.

Instruction Set Summary

Below is a summary of the V20/V30 instruction set. For details of the instruction and architecture, refer to the
uPD70108/116 User's Manual.

The following are descriptions of the instruction and conditions which cause exceptions when executed during
emulation mode.

« Unconditional Instruction Exception

Attempted execution of these instructions always causes an Emulation Mode Privileged Instruction
exception to occur.

Trap instructions BRK, BRK 3
Interrupt Processing RET!

I/0O Instructions INM, OUTM
Processor Control Instructions HALT, El, DI

« Conditional Instruction Exceptions

Conditional instructions may or may not cause an Emulation Mode Privileged Instruction exception
depending on the current processor state.

The V20/V30 IN and OUT instructions cause an exception if the CTL bit in the PSW2 register is cleared.
The IN and OUT instructions execute normally when the CTL bit is set (I/O instruction trap enabled).

1/0 Instructions IN, OUT
The POP PSW instruction will conditionally trap if a change of state to the IE and BRK bit positions will
occur. No trap will occur if the state of these bit fields will remain unchanged.

PSW Instruction POP PSW

PRELIMINARY INFORMATION 10-6 1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL

Table 10—-1. Emulation Mode Instruction Set

V20/V39 EMULATION MODE

Instruction Class

Instructions

Data Transfer Instructions
Address Calculation Instructions
Arithmetic Instructions
Comparison Instructions
Logical Instructions

Bit Field Instructions

Bit Manipulation Instructions
Shift Instructions

Rotate Instructions

BCD Adjust Instructions
BCD Conversion Instructions
Decimal String Instructions
Stack Instructions

Stack Frame Instructions
Control Transfer Instructions
Block Transfer Instructions
Translate Instruction
Interrupt/Exception Return
Trap Instructions

1/0 Instructions

Processor Control Instructions
Repeat Prefixes

Segment Override Prefixes
Coprocessor Instructions
Miscellaneous Instructions

MOV, MOV AH, PSW, MOV PSW, AH, XCH, CVTBW, CVTWL
LDEA

ADD, ADDC, SUB, SUBC, INC, DEC, MULU, MUL, DIVU, DIV, NEG
CMP, TEST ,

NOT, AND, OR, XOR

INS, EXT

TEST1, SET1, CLR1, NOT1, SET1/CLR1/NOT1 CY, SET1/CLR1 DIR .

SHL, SHR, SHRA

ROL, ROR, ROLC, RORC

ADJBA, ADJ4A, ADJBS, ADJ4S

CVTBD, CVTDB

ADDA4S, SUB4S, CMP4S, ROL4, ROR4

PUSH, POP, PUSH R, POP R, PUSH PSW, POP PSW
PREPARE, DISPOSE

CALL, RET,Bcc, DBcc, BCWZ

MOVBK, CMPBK, CMPM, LDM, STM

TRANS

RETI

BRK, BRK 3, BRKV

IN, OUT, INM, OUTM

HALT, EI, DI, BUSLOCK

REPC:, REPNC:, REP:, REPE:, REPZ:, REPNE:, REPNZ:
DSO0:, DS1:, SS:, PS:

POLL, FPO1, FPO2

NOP, CHKIND

1.0

* Run-time Exceptions

86-287

The following group of V20/V30 conditions are detected by emulation mode and cause an Emulation Mode

Fault exception.
— zero divide exception
~ single step trap
— overflow exception ,
— CHKIND instruction exception
-~ undefined opcode

- Disregarded Instructions

The following instructions are ignored:

Processor Control Instruction
Coprocessor Instruction

BUSLOCK
POLL

10-7 PRELIMINARY INFORMATION

V20/V30 EMULATION MODE nPD70616 PROGRAMMER'S REFERENCE MANUAL

+ System Implementation Exceptions

The following V20/V30 instructions will cause an Emulation Mode Privileged Instruction exception
depending on the system implementation.

Coprocessor Instructions FPO1, FPO2

Table 10-2. Emulation Mode Privileged Operations

Instruction Class Instructions
Reserved Instruction Exception Trap INM, OUTM, HALT, El, DI, BRK, BRK 3, RETI, MOV PSW, AH
Zero Divide
Single Ste
Overflow Exception
CHKIND Exception
Undefined Opcode
110 Emulation Option IN, OUT
System Dependent FPO1, FP0O2
Data Dependent POP PSW
Disregarded BUSLOCK, POLL

86-288

Mode Transitions

A transition from native mode to emulation mode occurs when the EM bit in the PSW register is set when the PSW is

restored during the execution of a RETIS instruction. Transitions from emulation mode to native mode occur as a
result an interrupt or exception.

Native Mode — Emulation Mode

Two instances of native to emulation mode transitions exist. The initial entry into emulation mode is a tfour step
process.

1. initialize the PS register (R9) and any other emulation mode registers

2. prepare a PSW image with EM = 1 and EL = 11 and push it onto the stack
3. push the initial PC of the emulation mode program on the stack

4. execute a RETIS instruction

The emulation mode PS register must be initialized by the native mode program since fetching of the initial emulation
mode instruction requires valid program segment register contents. Other registers can be pre-initialized in native
mode or initialized by the emulation mode program. Only the lower 16-bits of the emulation mode PC is valid and the
upper halfword is ignored by pPD70616 emulation mode programs.

Emulation mode program execution can only take place at execution level 3. The EL field in the new PSW image is
checked and if an execution level other than level 3 is specified an lllegal Data Field exception will occur.

PRELIMINARY INFORMATION 10-8 4 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL V20/V30 EMULATION MODE

Emulation Mode — Native Mode
Return to native mode from emulation mode programs occurs as the result of an interrupt or exception.
* Interrupts

All interrupts on the uPD70616 microprocessor are processed in native mode. Upon the detection of an
interrupt, the emulation mode program will be suspended and native mode will be restored.

« Exceptions

Emulation mode exceptions occur as a result of program execution and require processing by a native mode
handler to correct a fault or take some other predetermined action.

in either case, the return to emulation mode after processing of the exception or interrupt is by the RETIS instruction.

Termination of an emulation program is accomplished by the reserved 63H opcode. Attempted execution of this
opcode will cause the Reserved Emulation Mode Opcode exception to be generated along with a specific exception
code identifying the exception as a terminate operation.

Memory Address Space

The one megabyte (1MB) address space of the V20/V30 microprocessors is mapped into the native mode virtual
address space (virtual mode) or the memory address space (physical mode). In both cases the emulation mode
memory address space occupies the lower megabyte of the corresponding virtual or memory address space.

Each of the four general purpose registers (R8—R11) are split into two fields. The lower 16-bit field contain the four
V20/V30 segment registers in the lower halfword and the upper halfword must be must be zeroed for proper
‘operation.

Address Generation

Both a segment register and an effective address are used to form the emulation mode address. The 16-bit effective
address is first determined by the operand addressing mode and zero extended to 32-bit length. The 16-bit segment
value in the appropriate segment register is left shifted four places and combined with the effective address to
produce the 20-bit emulation mode address. This address is then zero extended to 32-bit length and either translated
(virtual mode) or passed directly to the bus interface unit (physical mode).

Figure 10-5. Emulation Mode Segment Registers

31l \ '1615' —_ , , ‘0

000O0O0OOOCOOOOOOODO DSt R8s
0'0'0'0'O'O'O'O'OI'O'O'O‘OYOIO'O o 'P'S‘ S R9
Ol0'0'0'0'0'0r0j010l0'0'0'0.0I0 o 'S'S' T R10
O'OIO'O'OjO'O'O'0'070'0'0'0'0'0 S 'D'SO' o R11

86-289

bits0:15 SEG The SEG (segment) field contains the 16-bit segment base address
bits 16:31 RFU Reserved for future use

1.0 - 10-9 PRELIMINARY INFORMATION

V20/V30 EMULATION MODE uPD70616 PROGRAMMER'S REFERENCE MANUAL

Figure 10-6. Emulation Mode Address Generation

31 16 15 0

0 0 0 0 00 000 0O 0 0 0 0 0 O Segment Register

31 0
T L T ¥ Ll LJ L L) T T T T L) ¥ L} L] L] L T T T T T T T L4 T T v

o 0 0 0 0 0 0 0 0 0O 0 O Segment Register 0 0 0 O

31 16 15 0
L] T L] L] L] L) Rl T L T L] T L) T L] Ll L L] L] L} ¥ L] L) L] L T T 1 L} T

0o 0 0 0O OO 0O OO O OO0 O OO O0O Effective Address

31 20 19 0
T 1 L4 T T Ll LJ T L] T T L4 T ¥ L) L) T T T T L] Ll T L] T T L) T T L]

0 0 0 0 000 0 0 0 0 0 Emulation Mode Virtual Address

86-290

VO Address Space

The V20/V30 emulation mode I/0O address space (addresses 00000H to OFFFFH) is mapped into the lower 64KB
addresses of the uPD70616 address space if the emulation mode 1/O option has been selected.

An exception will occur if an I/O instruction is attempted and the I/O emulation option is enabled.

Emulation Mode Notes

The nPD70616 V20/V30 emulation mode offers an upgrade path to a 32-bit environment while maintaining software
compatibility with the previous generation of 16-bit devices. However, some precautions must be observed to
guarantee the compatibility of 16-bit software in the 32-bit environment. Thes2 precautions relate to the small subset
of application software which exhibit timing dependencies or utilize non-portable programming styles. A list of the
programming restrictions follows.

« Instruction execution speed

There is no correlation between the V20/V30 instruction execution times and the same instructions executed in
V20/V30 emulation mode. There is no guarantee that programs dependent on the execution time of an
instruction or sequence of instructions will execute correctly in V20/V30 emulation mode.

+ Self modifying code

Programs that modify the instruction stream and depend on the size of the V20/V30 instruction prefetch queue
may not operate correctly on the nPD70616 microprocessor.

PRELIMINARY INFORMATION 10-10 - 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL V20/V30 EMULATION MODE

1.0

« Instruction length restriction

The V20/V30 microprocessors place no limit on the length of an instruction. The pPD70616 microprocessor
limits the length of a single instruction to 31 bytes. This situation can only arise out the use of duplicated
instruction prefixes.

pPD8080AF emulation mode

The uPD8080AF emulation mode of the V20/V30 is not supported. The attempted execution of a BRKEM
instruction will cause an illegal instruction exception .

Undefined opcodes

Attempted execution of undefined V20/V30 opcodes will cause an illegal instruction exception except in the
following cases:

Second Byte
First Byte
MsB LSB
COH, C1H, DOH, D1H, D2H, D3H X X 1 1 0 X X X
F6H, F7H X X 0 0 1 X X X
FEH, FFH X X 1t 1 1 X X X

86-216

In the above three cases, results of the undefined instruction execution is UNPREDICTABLE.

PUSH SP instruction

The contents of the stack following the execution of a PUSH SP instruction differs between the V20/V30 and
the pyPD70616. The V20/V30 PUSH SP first decrements the SP register and then copies SP to the stack. The
emulation mode PUSH SP instruction decrements SP by two and pushes the original value of the SP register
on the stack.

Address wrap-around

Address wrap around occurs when a 16-bit or greater data access is made across a segment (64KB) or address
space (1MB) boundary and is not supported by V20/V30 emulation mode. In the case where the operand wraps
completely around, the address computation will be correct. Restrictions only apply to accesses across a
segment or address space boundary.

In the V20/V30 microprocessors, a 16-bit access to data located at offset 64K—1 from the base of the segment
results in the least significant byte fetched from offset 64K—1 and the most significant byte fetched from offset
zero within the same segment. Emulation mode differs in that 16-bit data is located at offset 64K-1 (LSB) and at
offset 64K (MSB) in the same segment.

10-11 PRELIMINARY INFORMATION

V20/V30 EMULATION MODE pPD70616 PROGRAMMER'S REFERENCE MANUAL

Instructions which potentially cause a wrap around access violation are:

» 16-bit data transfers

« 32-bit data transfers

bit field instructions

save/restore multiple registers (PUSH R/POP R)
stack frame allocation (PREPARE)

Segment wrap around restrictions also apply to the individual data transfers of 16-bit prefixed block transfer
instructions.

» 64K, 1M boundary instruction fetch

Instruction fetch across either a 64KB segment boundary or the 1TMB memory address space boundary is
prohibited.

« Memory allocation

The memory and /0 address spaces for emulation programs is determined by the operating system. Caution
should exercised in allocation of memory pages to emulation mode programs to prevent inadvertent exceptions
due to improper permissions.

- Segment registers

During emulation mode, if the upper order 16-bits of any segment register become non-zero, the results will be
UNPREDICTABLE.

« Emulation mode single step

Single stepping of emulation mode programs is possible using the uPD70616 single step facility to cause a trap
upon entry into the emulation mode program. The emulation mode BRK flag has no effect on single step
operation and must be emulated by the native mode single step trap handler.

» Emulation mode interrupt processing

No provisions for the processing of interrupts or exceptions by emulation mode programs is provided. The IE
flag in the emulation mode PSW has no meaning and the control of maskable interrupts must be done by the
native mode exception handler.

PRELIMINARY INFORMATION 10-12 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL FUNCTIONAL REDUNDANCY MONITOR

Section 11
Functional Redundancy Monitor

With each passing day, an increasing number of computer systems are called upon to perform in environments where
the cost of an error in economic or human terms is extremely high and failures simply cannot be tolerated. Applications
such as digital flight controls, telephone switching, transaction processing and others all require the use of systems
which have a MTBF (mean time between failure) measured in the thousands or millions of years or whose availability
(the time which the system is available to the application) exceeds 99% over a period of several years. The uPD70616
microprocessor is equipped with special purpose logic to aid in the design of highly reliable and fault tolerant
computing systems.

Fault tolerant systems can be organized in many different configurations depending on the application and the degree
of fault tolerance. The uPD70616 supports fault tolerant system design by permitting the use of multiple uPD70616
microprocessors operating as master/checker pairs. However, the design of a fault tolerant system requires much
more than redundant hardware because software failures also contribute to the overall system failure rate. The
combination of hardware fault coverage, fault isolation and system reconfiguration with the powerful exception
handling facilities makes the uPD70616 an optimal solution for the design of high performance, fault tolerant systems.

Fault Tolerant System Configuration

Prior to a general discussion of fault tolerance and the issues concerning the design of highly reliable systems, a
Jefinition of the term should be presented. A system is said to be fault tolerant if it can survive and function in the
presence of one or more faults. A fault tolerant system can further be classified as degrading or non-degrading. A
system built using the concept of graceful degradation continues to operate as faults occur but the system
successively reconfigures to a lower levels of performance. A non-degrading system uses massive redundancy in a
way that failures are tolerated without a change in system performance until the redundancy is exhausted and the
system ultimately fails.

All fault tolerant systems follow a similar path when confronted with a fault in the system. The basic sequence of steps
include:

« fault detection

» fault isolation

» fault recovery

- system reconfiguration

Much emphasis must be placed on fault detection because the least reliable system is one with a latent or undetected
fault that can propagate and corrupt the entire system. When a fault occurs it must be allowed to propagate in order to
be detected. It is the task of a fault containment logic to detect as soon as possible the occurrence of a fault and
contain or isolate it from the remaining healthy portion of the system. Next the fault must be analyzed to determine the
extent of damage to the system and finally the system must reconfigure to remove the faulty section and restore to the
system to a stable, healthy state.

One must also distinguish between two types of faults. The vast majority of faults that occur in a system can be
characterized as transient faults. Transient faults are faults which disappear when re-tried because the disturbance
which caused the fault is no longer present in the system. Because the frequency of transient faults is so much
higher, a system cannot afford to degrade the system each time a fault is detected. Thus the capability of automatically
re-trying the faulted operation without the intervention of the operating system is desirable.

1.0 11-1 PRELIMINARY INFORMATION

FUNCTIONAL REDUNDANCY MONITOR uPD70616 PROGRAMMER'S REFERENCE MANUAL

Finally, the nPD70616 functional redundancy monitor is but the first step in the design of a fault tolerant system.
There is no simple, one-step solution to design in fault tolerance since a system is only as reliable as the least reliable
component. Thus, similar fault tolerant design techniques must also be applied to the memory and 1/O subsystems in
order to improve the reliability of these subsystems to the same level of reliability as the processor.

Figure 11-1. Functional Redundancy Monitoring

Status/Control
Outputs

Checker Mode

Faun Output
Master Mode (HFM%%
pPD70616

Data Bus
<
Address Bus
System Hatt
(BFREZ)
86-226

Functional Redundancy Monitor (FRM)

The concept of FRM is demonstrated by the duplex system shown in Figure 11-1. Functional redundancy monitoring
is based on identical logic running in paraliel with one pnPD70616 microprocessor functioning as the master and the
second uPD70616 configured as the checker. During operation, both the master and checker operate in lock-step on
identical instruction and data streams but only the master actually drives the address, data and control buses. Instead
of driving the bus outputs, the checker compares its independently computed state with the state asserted by the

master uPD70616 and outputs a signal when a discrepancy is detected. The following is a description of the FRM
mode.

1. Pin Description

Four of the uPD70616 1/O pins are used for functional redundancy monitoring:

Table 11-1. FRM Pin Functions

Pin Name vo Function
BMODE (FRM) Input Selects the normal or FRM operating mode
BLOCK (MSMAT) Output Checker output indicating a mismatch has been detected
BFREZ Input Freezes processor operation
RT/EP Input Continue/Interrupt selection input
262

PRELIMINARY INFORMATION 11-2 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL FUNCTIONAL REDIUNDANCY MONITOR

2. Mode Selection

FRM is enabled and disabled by the BUSMD/FRM input pin. Refer to the nPD70616 data sheet for the
technical details of enabling the FRM logic.

3. Monitoring

When enabled, the checker microprocessor continuously compares the contents of the address bus,
data bus, status outputs and MRQ* and UBE"* pins with the expected values. Should a discrepancy be
detected, the output will indicate a mismatch and either the master or checker processor could be faulty.

4. Fault Detection

When a mismatch occurs, the checker pPD70616 will assert the MSMAT* (Mismatch) output. This signal
in turn informs external logic that a fault has been detected and that intervention is required.

5. Fault Isolation

In response to the mismatch signal, the external fault logic must stop both processors by asserting the
BFREZ (Bus Freeze) input. When BFREZ is asserted, all further bus accesses are disabled and
processing is suspended. In response to the BFREZ interrupt, the master and checker yPD70616
microprocessors will three-state the address, data and control buses. Both processors will remain isolated
and disconnected from the system as long as BFREZ is asserted.

6. Fault Recovery

Once the suspect devices have been isolated, the system can initiate the fault recovery procedures. Two
methods of fault recovery are supported by the uPD70616, instruction continuation and interrupt.

Instruction continuation involves restarting the processors as if no fault occurred. In this mode, the
processors will start by re-trying the bus cycle that failed and continuing normal execution. The power of
this mode is that the new master need not be the same as the old master, i.e., a reconfiguation can occur.
The other alternative is the bus freeze interrupt which causes forces an interrupt and subsequent analysis
by system software.

Selection of the recovery mode is via the RT/EP* input pin. When the BFREZ input is negated, each
uPD70616 checks the state of the RT/EP* pin. If RT/EP* is at a high level, then the instruction
continuation mode is used. If at a low level, the bus freeze interrupt will occur and be serviced by both
microprocessors.

Note that fault detection can only occur when an error induced by a fault propagates to an external pin. Because of the
pipelined architecture and the fact that instructions can execute which modify the internal state with no external
indication (such as register to register arithmetic operations), faults may not be detected until they are observable from
the external pins.

Bus Freeze Interrupt

The bus freeze interrupt is used by external logic to force the processor into the bus freeze interrupt handler.
Following the occurrence of a bus freeze interrupt, all interrupts are disabled and the PC and PSW are saved on the
interrupt stack. The bus freeze interrupt handler is then expected to perform fault analysis of the system in an attempt
to isolate the faulty component.

1.0 11-3. PRELIMINARY INFORMATION

FUNCTIONAL REDUNDANCY MONITOR uPD70616 PROGRAMMER'S REFERENCE MANUAL

Because it may not be readily apparent which processor is faulty, the bus freeze interrupt handler in conjunction with
the external voting logic will disconnect the suspect pair from the system and perform independent self tests on each
processor by holding one processor in the bus freeze state while the other is tested in the normal mode. If either
processor is found to be faulty, the system can be informed. Otherwise, the fault can be considered a transient fault
with the processors being restarted and placed back on-line.

FRM Applications

The design of a fault tolerant system can take many approaches depending on the performance, reliability and fault
tolerance requirements for the proposed system. Two examples of typical fault tolerant system implementations are
introduced but keep in mind that each application poses its own unique set of requirements.

With this in mind, a bibliography of selected works on fault tolerant system design is included at the end of this section.
The descriptions of the nPD70616 fault detection and recovery capabilities and an general understanding of the
overall requirements for fault tolerant system design will aid the designer in choosing the correct fault tolerant
implementation for a particular application.

1. Duplex System

A duplex system provides the basis for fault detection but provides no certain indication which unit has
failed. While it is also possible under certain circumstances for a duplex system to isolate a fault to a
specific unit though self test and reasonableness checks, there is no guarantee that the system will be
able to survive the fault.

Figure 11-2. Duplex System Implementation

k Data Bus >

Master Mode k Address Bus > Checker Mode

uPD70616 wPD70616

K Control Bus >
BFREZ QQ MSMAT

While limited in ability to recover from certain faults, dual systems do have varied applications. Many
systems are required only to fail in a safe state. The specification of such a system would indicate what
final state the system should end up in the event of a failure. The primary goal of a fail-safe system is for
the state of the system not present any hazard to the user.

A typical example of a fail-safe system is the common traffic signal. Because town public works
departments wish to minimize their capital outlays yet not endanger the driving populace, traffic signals are
specified to be fail-safe. In the event of a failure, a traffic signal should never fail in the state that all lights
are green since this would pose severe liabilities for the town. Instead, the final state for a failed traffic
signal will typically be one set of lights flashing red and the other set of lights flashing yellow.

PRELIMINARY INFORMATION 11-4 . 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL FUNCTIONAL REDUNDANCY MONITOR

Because the cost of a system is directly proportional to the amount of redundancy, the duplex system is
the system of choice for applications requiring to only be aware of faults in the system and are not required
to recover completely from them.

2. N-Modular Redundancy

N-modular redundancy is a method used to improve upon the fault coverage of the duplex system to
provide the capability to survive faults. In order to provide an indication of which processor in a system has
failed, a majority vote of all processors in the system is required. An n-modular redundant system which
uses an odd number of processors and majority voting logic to accurately determine the failed modules.

The most common implementation of an n-modular redundant system is a TMR (Triple Modular
Redundant) system. The TMR approach triplicates all logic and can use a 3-way majority voter to select the
correct output and identify a faulty unit. Because a TMR system can survive the occurrence of any single
fault, it is said to be 1-fault tolerant.

In the event of a failure, the voting logic shuts down the failed unit, allowing the module to be repaired off-
line while the system continues to function normally. After the repair has been completed, the module
can be restored to the on-line condition and full fault tolerance restored.

Figure 11-3. Triple Modular Redundant System

< Control Bus >
< Address Bus >
< Data Bus >
Master Mode Checker Mode Checker Mode
pPD70616 uPD70616 uPD70616
BFREZ BFREZ MSMAT BFREZ MSMAT

4

A 3

Majority Vote Logic

Because the MTBF of a computing module is large (typically measured in months or years) and the MTTR
(Mean Time To Repair) is generally 30 minutes to 1 hour, the probability of a second failure during the
repair interval is low and the overall system MTBF can be on the order of hundreds of years.

1.0 11-5 PRELIMINARY INFORMATION

FUNCTIONAL REDUNDANCY MONITOR pPD70616 PROGRAMMER'S REFERENCE MANUAL

Section 11 Bibliography

[1] A. Avizienis
Fault Tolerant Systems
IEEE Transactions on Computers, pp. 1304-1312, Vol. C-25, No. 12, December1976

[2] D. P. Siewiorek and R. S. Swarz '
The Theory and Practice of Reliable System Design
Digital Press, 1982

[3] G. D. Kraft and W. N. Toy
Microprogrammed Contro!l and Reliable Design of Small Computers
Prentice-Hall, 1981

[4] Special Issue on Fault Tolerant Computing
|EEE Computer, Vol. 17, No. 8, August 1984

[5] D. P. Siewiorek, C. G. Bell, and A. Newell
Fault Tolerant Systems (Section 6 of Part 2)
in Computer Structures : Principles and Examples
McGraw-Hill, 1982

PRELIMINARY INFORMATION 11-6 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

This appendix contains a summary of the uPD70616
instruction set. The instructions are functionally grouped
together by instruction type for ease of reference.

uPD70616 Program Register Set

APPENDIX A

Appendix A

‘Register Description

RO -R31 General purpose registers
PSW Program Status Word

PC Program Counter

AP Argument Pointer (R29)
FP Frame Pointer (R30)

SP Stack Pointer (R31)

uPD70616 Privileged Register Set

Register Description

ISP Interrupt Stack Pointer

LOSP Level 0 Stack Pointer

Li1SP Level 1 Stack Pointer

L2SP Level 2 Stack Pointer

L3SP Level 3 Stack Pointer

SBR System Base Reqgister

TR Task Register .

SYCW System Control Word

TKCW Task Control Word

PIR Processor ID Register
PSW2 Program Status Word 2 (Emulation Mode PSW)
ATBRO Area Table Base Register 0
ATLRO Area Table Length Register O
ATBR1 Area Table Base Register 1
ATLR1 Area Table Length Register 1
ATBR2 Area Table Base Register 2
ATLR2 Area Table Length Register 2
ATBR3 Area Table Base Register 3
ATLR3 Area Table Length Register 3
TRMOD Trap Mode Register

ADTRO Address Trap Register 0
ADTMRO Address Trap Mask Register 0
ADTR1 Address Trap Register 1
ADTMR1 Address Trap Register 1

1.0

Instruction Set Summary
Definitions
Identifier Description
reg Any user register, RO-R31
.B Byte integer or character (8-bit)
H Halfword integer or character (16-bit)
W Word integer (32-bit)
.D Doubleword integer (64-bit)
S Short real (32-bit IEEE floating point value)
L Long real (64-bit IEEE floating point value)
.BH Byte to halfword
.BW Byte to word
HW Halfword to word
.HB Halfword to byte
WB Word to byte
WH Word to halfword
WS Word to short real
WL Word to long real
SwW Short real to word
LW Long real to word
P2 Packed to zoned decimal
ZP Zoned to packed decimal
PSW Condition Codes
Mnemonic Flag Name
cY Integer carry flag
oV Integer overflow fiag
S Integer sign flag
Y4 Integer zero flag
Fiv Floating point invalid operation flag
FzD Floating point zero divide flag
FOV Floating point overflow flag
FUD Floating point underfiow flag
FPR Floating point precision flag
Flag Operations
Identifier Description
(blank) No change
- No change
0 Cleared to 0
1 Setto 1
* Set or cleared according to result
R Restored to previous value

PRELIMINARY INFORMATION

APPENDIX A

Opcode Fields

Condition Code Field

The PSW flags are used by the conditional branch
instructions to determine the conditions necessary to
transfer program control. These instructions include the
Bce (Branch on Condition), DBcc (Decrement and
Branch on Condition) and TRAP instructions.

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Character Size Field ‘
The direction field is used by the character and bit strings
instructions to determine the direction of string
processing. The programmer has the option of
processing character and bit strings in the upward
(increasing addresses) or downward (decreasing
addresses) direction to allow transfer and manipulation of
overlapping strings with a single instruction.

c3 ¢c2 ct o0 Name Condition c Operand Size
o 0 o0 O Overflow OoV=1 0 Byte character
o 0 O 1 Not overfiow ov=0 1 Halfword character
o 0 1 0 Carry/Lower Cy=1
o 0 1 1 No carmy/Not lower CY=0
0o 1 0 0 Zero Z=1 Direction Field
o 1t 0 1 Not zero Z=0 The direction field is used by the character and bit strings
o 1 1 0 Not higher (CYvZ)=1 instructions to determine the direction of string
o 1 1 1 Higher (CYvZ)=0 processing. The programmer has the option of
1 0 0 O SigrvNegative S=1 processing character and bit strings in the upward
1 0 0 1 Not sign/Positive S=0 (increasing addresses) or downward (decreasing
1 0 1 0 True Always addresses) direction to allow transfer and manipulation of
10 1 1 False Never overlapping strings with a single instruction.
1 1 0 O Less than (S®0V)=1
1 1 0 1 Greater or equal (S®e0oV)=0 d Direction
11 10 Less or equal (S®eoV)vZ=1 0 Upward (increasing addresses)
1 1 1 1 Greater (S®0oV)vz=0 1 Downward (decreasing addresses)

integer Size Field

The integer size field specifies the integer data type for
integer instructions. The pPD70616 supports both
signed and unsigned integers in each of the integer
formats.

siz Operand Size
00 Byte

(o] Halfword

10 Word

11 Reserved

Floating Point Size Field
The floating point size field determines the operand data
type for the floating point instructions. Both IEEE short

and long real data types are supported by the uPD70616

microporcessor.
8 Operand Size
0 Short Real (32-bit)
1 Long Real (64-bit)

PRELIMINARY INFORMATION

Displacement Size Field

The displacement size field is found in the conditional
branch instructions and determines whether an 8- or 16-
bit displacment field follows the opcode.

b Displacement Size

o] Byte (8-bit signed displacement)

1 Halfword (16-bit signed displacement)
A-2 1.0

LTS

pPD70616 PROGRAMMER'S REFERENCE MANUAL APPENDIX A
Instruction Set Reference
' Flags
Mnemonic 76543210 76543210 Format Cy Ov § 2 Exceptions

Data Transfer Instructions
MOV.B 00001001 (] 1,3
MOV.H 00011011 LI 1,3
MOV.W 00101101 L 1,3
MOV.D 00111111 L 1,3
MOVS.BH 00001010 Ll 1
MOVS.BW 00001100 L 1
MOVS.HW 00011100 L 1
MOVZ.BH 00001011 1N 1
MOVZ.BW 00001101 1L 1
MOVZ.HW 00011101 Li 1
MOVT.HB 0001212001 LI - * - - 1
MOVT.WB 00101001 LW - % - - 1
MOVT.WH 00101011 LAl - * - - 1
XCH 01000 8iz 1 L 1,3
MOVEA 01000 siz 0 L 1
RVBYT 00101100 L 1
RVBIT 00001000 Ln 1

Integer Arithmetic Instructions
ADD 10000 8iz 0 ' 1L % x 1
ADDC 10010 8iz 0 (A1] * x x x 1
suUB 101018siz 0 L LI I 1
SUBC 100118iz 0 L LI T B 1
MUL 10000 s8iz 1 LN - x x = 1
MULU 10010 s8iz 1 LI - * % 1
MULX 10000110 L - * * * 1
MULUX 10010110 L - & x » 1
DIV 10100 siz 1 N - x x = 1,4
DIvu 101108iz1 L - 0 * * 1,4
DIVX 10100110 L - & 1,4
DiVUX 10110110 (] - % x 1,4
REM 01010 siz O LH - 0 = * 1,4
REMU 01010 siz 1 L - 0 = = 1,4
INC 11011 8iz - ! * ok x x 1
DEC 11010 giz - n x ox % = 1
NEG 00111 8siz 1 LI x x x % 1
CMP 10111 8iz 0 LW * x x %
TEST 11110 siz - i 0 0 = =

Logical Instructions

AND 10100 8iz 0 L - 0 = * 1
OR 10001 siz O LI - 0 = = 1
XOR 101108iz 0 L - 0 = * 1
NOT 001118iz 0 L - 0 = = 1

1.0

A-3

PRELIMINARY INFORMATION

APPENDIX A pPD70616 PROGRAMMER'S REFERENCE MANUAL

Opcode Flags

Mnemonic 76543210 176543210 Format cYy ov.s 2Z Exceptions

Shift/Rotate Instructions
SHA 10110 siz 1l L LI T S 1
SHL 10100 siz 1 L « 0 % = 1
ROT 10001 siz 1 1,1 + 0 x = 1
ROTC 10011 siz 1 Ll 0 = 1

Floating Point instructions
MOVF 01011180 00001000 i = 0 =« = 1,3,7,9
ADDF 01011180 00011000 I *= 0 * = 1,3,6,7,8,9
SUBF 01011180 00011001 I = 0 * » 1,3,6,7,8,9
MULF 010111880 00011010] * 0 » * 1,3,6,7,8,9
DIVF 01011180 00011011 it = 0 = = 1,3,6,7,8,9, 10, 11
CMPF 01011180 00000000 i * & x = 1,3,6,7,8,9
NEGF 01011180 0000G61001 I * 0 . * 1,379
ABSF 01011180 0000010 I 0O 0 0 = 1,879
SCLF 01011180 00010000 i = 0 = = 1,3,6,7,8,9
CVTF 01011111 00001000 [*» 0 » = 1,3,6,7,8,9
CVT.WS 01011111 00000000 I = 0 = = 1,3,6,7,8,9
CVT.WL 01011111 00010001 I * 0 = = 1,3,6,7,8,9
CVT.SW 01011111 00000001 I - o« 1,3,6,7,8,9
CVT.LW 01011111 00001001 I - % s 1,3,6,7,8,9
TRAPFL 11001011 \' 1,3,6,7,9 y

Decimal Arithmelic Instructions
ADDDC 01011001 00000000 Viie . - - s 1,5
SuUBDC 01011001 00000001 Viie - - = 1,5
SUBRDC 01011001 00000010 Viie . - = 1,5
cv1D.PZ 01011001 00010000 Vile - - - = 1,5
CVTD.2P 01011001 00011000 Vile - - = = 1,5

Bit Manipulation Instructions
TEST1 10000111 L LI 1,2
SET1 10010111 LI * - - 1,2
CLR1 10100111 Li * - - s 1,2
NOT1 10110111 i - - * 1,2

Bit Field Instructions

EXTBFS 01011101 00001000 Vilb 1,2
EXTBFZ 01011101 00001001 Vilb 1,2
EXTBFL 01011101 00001010 Vilb 1,2
INSBFR 01011101 00011000 Vile 1,2
INSBFL 01011101 00011001 Viie 1,2
CMPBFS 01011101 00000000 Viib L I B 1,2
CMPBFZ 01011101 00000001 Viib L T T 1,2
CMPBFL 01011101 00000010 Vilb LI T 1,2

Bit String Instructions
MOVBS 01011011 00001004d Viib 1
NOTBS 01011011 00001014d Vilb 1

PRELIMINARY INFORMATION A-4 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL APPENDIX A

Opcode Flags
Mnemonic 76543210 76543210 Format CYy ov 8§ Z Exceptions
Bit String Instructions (cont)
ANDBS 01011011 00010004 Vilb 1
ANDNBS 01011011 0001001d Viib 1
ORBS 01011011 00010104d Viib 1
ORNBS 01011011 00010014d Viib 1
'XORBS 01011011 0001l1004d Viib 1
XORNBS 01011011 00010014d Vilb 1
SCHOBS 01011011 000000CO0d Vilb 1
SCH1BS 01011011 00001014d Vilb 1
Character Manipulation Instructions
MOVC 010110¢cO 00001004d Vila 1,3
MOVCF 010110¢c¢cO 00001014d Vila 1,3
MOVCS 01011000 000021100 Vila 1,3
CMPC 010110¢c0O0 00000O0CO0O Vila == * * 1,3
CMPCF 010110¢0 000000O0C1 Vila - - * * 1,3
CMPCS 010110¢c0O 00000010 Vila - = x = 1,3
SCHC 010110¢cO 60011004d Vilb - - - * 1,3
SKPC 010110¢cO 0001101d Viib - - - * 1,3
Stack Manipulation Instructions
PUSH 1110111~ I 1,3
VPOP 11100111~ Il 1,8
‘PUSHM 1110110 - il 1,3
POPM 1110010 - It R R R R 1,3 (Note 1)
PREPARE 1101111~] 1,3
DISPOSE 11001100 v
Control Transfer Instructions
BC 011b0010 v
BE 011b011O0C v
BGE 011b1101 v
BGT 01l11l1b1111 \Y
BH 011b»0111 v
BL 011b0010O v
BLE 0111110 \Y
BLT 011b1100O0 \Y
BN 011b1000 [\
BNC 011b0011 v
BNE 011b0101 v
BNH 011b0110 v
BNL 011b0011 v
BNV 0110001 v
BNZ 011b0101 v
BP 011b1001 v
BR 011b1010 \Y
"DBC 11000110 reg 001 Vi
DBE 11000110 reg 010 Vi

1.0 A-5 PRELIMINARY INFORMATION

APPENDIX A

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Mnemonic 76543210 76543210 Format CYO'\zlhg.S 4 Exceptions
Control Transfer Instructions (cont)
DBGE 11000111 reg 110 \Y!
DBGT 11000111 reg 111 vi
DBH 11000111 reg 011 vi
DBL 11000110 reg 001 \'/
DBLE 11000110 reg 111 vi
DBLT 11000110 reg 110 vi
DBN 11000110 reg 100 \!
DBNC .11000111 reg 001 vi
DBNE 11000111 reg 010 Vi
DBNH 11000110 reg 011 vi
DBNL 11000111 reg 001 A
DBNV 11000111 reg 000 vi
DBNZ 11000111 reg 010 A
DBP 11000111 reg 100 Vi
DBR 110001110 reg 101 vi
DBV 11000110 reg 000 vi
DBZ 11000110 reg 010 vi
B 11000111 reg 101 Vi
JMP 1101011 -] 1
BSR 01001000 v
JSR 1110100 - m 1
RSR 11001010 v
CALL 01001001 LI 1
RET 11100001 - th
BRK 11001000 \
BRKV 11001001 v
TRAP 1110100 - i
RETIU 1110101 - n
Miscellaneous Instructions
NOP 11001101 \"
GETPSW 1111011 - n 1
UPDPSW.H 01001010 LW « x % %
CHLVL 01001011 LI 1
CHKAR 01001101 L * - * * 1
CHKAW 01001110 Ll * - * * 1
CHKAE 01001111 LN * - » - 1
TASI 1110000 - 1] * * * * 1
CAXI 01001100 | * » . * 1
SETF 01000111 L 1
Privileged Instructions
LDPR 0001001 (] 2,12
STPR 0000001 L 1,2,12
CLRTLB 1111111~ i 12
CLRTLBA 00010000 A 12

PRELIMINARY INFORMATION

A-6

1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL APPENDIX A
Flags
#nemonic 76543210 76543210 Format CY Ov 8 2Z Exceptions
Privileged Instructions (cont)

GETATE 00000101 1L - - = = 1,12
UPDATE 00010101 Lu - - = = 1,12
GETPTE 00000100 L x - - = 1,12
UPDPTE 00010100 L L 12
GETRA 000000111 il * I * 1,12
IN 00100 siz O ILH 1, 12
ouT 00100 siz 1 i,u 1,12
LDTASK 0000O0O0CO1 L 12
STTASK 1111110 - n 12
RETIS 1111101~ 1] * * x x 2,12
UPDPSW.W 00010011 I, * x x & 12
HALT 0000O0CGO0OO Vv 12
Exceptions Notes

1. lllegal Addressing Mode 1. Flags updated if PSW is specified in the register list

2. lllegal Data Type

3. Reserved Addressing Mode

4. Integer Zero Divide

6. lllegal Decimal Format

6. Floating Point Overflow

7. Floating Point Undeflow

8. Floating Point Precision

9. Reserved Floating Point Operand

10. Invalid Floatin%Point Operation

11. Floating Point Zero Divide
12. Privileged Instruction

1.0

A-7

PRELIMINARY INFORMATION

uPD70616 PROGRAMMER'S REFERENCE MANUAL

PRELIMINARY INFORMATION

APPENDIX A

1.0

pPD70616 PROGRAMMER'S REFERENCE MANUAL

APPENDIX B

Appendix B
Instruction Formats

15 14 13 12 0
i T 1 v ¥ T L] 1 v T
mod o|mjd reg op Format |
15 14 13 12 0
mod' mod ilm|m subop op Format Il
0
Ll L) L L T Ll T
mod op Format lIi
23 16 15 0
¥ T T T L] M T v L] L] v L) T L] L] L] 1] T
disp8/disp16 op Format IV
0
T L T Ll A L) T
op Format V
31 16 15 13 12 0
disp16 subop reg op Format VI
16 14 13 12 0
T L] L] L] L] L] L] T T L] L} T ¥ L L] L] L) T L T
ext' mod' ext mod 1im|m subop op Format Vila
15 14 13 12 0
mod' ext mod 1Im|m subop op Format Vilb
165 14 13 12 0
ext’ mod' mod 1Im|im subop op Format Viic
86-013
1.0 B-1 PRELIMINARY INFORMATION

APPENDIX B

uPD70616 PROGRAMMER'S REFERENCE MANUAL

Instruction Format Summary
Format Fields Description
Format | Opcode Fixed length data instructions using
Register Field register/register and register/memory

Operand Addressing Mode

ressing modes

Format |l Opcode Fixed length data instructions using memory/memory
Operand 1 Addressing Mode addressing modes and floating point instructions
Operand 2 Addressing Mode

Format lll Opcode Single operand instructions
Operand 1 Addressing Mode

Format IV Opcode Conditional branch instructions
PC relative displacement

Format V Opcode Zero operand instructions

Format Vi Opcode Loop instructions
Register Field
PC relative displacement

Format Vil O Variable length data instructions

pcode .
Operand 1 Addressing Mode
Operand 1 L%régm
Operand 2 Addressing Mode
Operand 2 Length

(character string, bit string, decimal arithmetic)

PRELIMINARY INFORMATION

B-2 1.0

uPD70616 PROGRAMMER'S REFERENCE MANUAL

APPENDIX C

Appendix C

Addressing Mode Encodings

< mod > m Addressing Mode
71 63 55 47 39 31 23 15 7 0

011« Rne{ 1 Rn

001<Rn®{ 0 [Rn

100« Rn»| 1 Rn+

101« Rne{ 1 -Rn

1110«val»| © immed.4

j¢— disp —»{000«-Rnaf 0 disp.8[Rn

le— disp —»{11110000 | © disp.8[PC

l4— disp —»{ 1004 Rn4 0 disp.8[Rn]

le— disp —»{11111000 | O ldisp_a PC]
011« Rn»{110« Rx# 1 {Rn](Rx)
j¢— val —*{11110100 0 immed.8

j———— disp ————»1 0019 RN¥ 0 disp.1 SERn

ad disp 1 11110001 0 disp.16[PC

| € digp | 101 @RS 0 {djsp.16 Rn}

- disp 11111001 | © disp.16(PC

[vg| ——81 11110100 | © , immed.16
e disp1 —»{e-disp2 —»! 000 RN 1 disp1.8[disp2.8[Rn]]
e disp1 —>{e—diSp2 —4 11111100 | © disp1.8[disp2.8[Rn]]
4 disp ~» 000¢Rn» 110@ Rx» 1 disp.8[Rn](Rx)
f¢— disp —{ 11110000 | 110@ Rx#» 1 disp.8|PC|(Rx)
e— disp —»] 100« RN & 1104 Rx & 1 [disp.8[Rn]}(Rx)
44— disp —»} 11111000 | 110@ Rx» 1 [disp.8[PC]}(Rx)

f¢———— disp————»1 0014 Rn-»{110€¢ Rx»{ 1 disp.16[Rn](Rx)
[——— disp —»1 11110001 |110@* Rx-»{ 1 disp.16{PC (Rx)
 g——eeome digp =0 100¢ RN ~#{110@ Rx#| 1 [disp.16[Rn]}(Rx)
[¢——— disp————»{ 11111000 |110¢Rx-»| 1 [disp.16[PC})(Rx)
disp 010«¢Rn#& 0 disp.32[Rn)
disp 11110010} 0O disp.32[PC]
< disp > 110¢Rn¥ 0 disp.32[Rn}]

- disp » 11111010 0 disp.32{PC]

[4——— disp1 :—:'::dispz ——» 0014RNH 1 disp1.16[disp2.16[Rn]
le———— disp disp2 ———{ 11111101 | 0 disp1.16{ disp2.16[PC]]
< addr 11110011 | 0O faddr
< addr » 11111011} 0O {/addr]
< val » 11110100 | O immed.32
- disp » 010 «Rn» 110« Rx+» 1 disp.32[Rn](Rx)
<+ disp > 11110010 | 110« Rx# 1 disp.32[PC}(Rx)
- disp 110 <«Rn» 110« Rx# 1 disp.32[Rn]}(Rx)
< disp » 11111010 | 110« Rx& 1 disp.32[PCJ](Rx)

-+ addr » 11110011 | 110 Rx# 1 /addr(Rx)

- addr #{ 11111011 | 110 Rx»{ 1 [/addr)(Rx)
< disp1 =‘E disp2 ﬁ 0104 RN 1 disp1.32[disp2.32{Rn]]
< disp1 b disp2 > 11111110 0 disp1.32[disp2.32[PC]]

86-041
1.0 C-1 PRELIMINARY INFORMATION

uPD70616 Programmer’s Reference Manual

NEC Electronics Inc.
CORPORATE HEADQUARTERS

401 Ellis Street

P.0. Box 7241

Mountain View, CA 94039
TEL 415-960-6000

TWX 910-379-6985

©1986 NEC Electronics Inc./Printed in U.S.A.

For Literature Call Toll Free: 1-800-632-3531
1-800-632-3532 (In California)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC!
Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc.
are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions
of Sale onty. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics
tnc. makes no warranty of merchantabitity or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any
errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the
information contained in this document.

NECEL-000854
STOCK NO. 500397

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	07-001
	07-002
	07-003
	07-004
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	07-108
	07-109
	07-110
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	B-1
	B-2
	C-1
	xBack

